BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 11880583)

  • 1. Transgenic approaches in commonly consumed cereals to improve iron and zinc content and bioavailability.
    Holm PB; Kristiansen KN; Pedersen HB
    J Nutr; 2002 Mar; 132(3):514S-516S. PubMed ID: 11880583
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transgenic expression of phytase in wheat endosperm increases bioavailability of iron and zinc in grains.
    Abid N; Khatoon A; Maqbool A; Irfan M; Bashir A; Asif I; Shahid M; Saeed A; Brinch-Pedersen H; Malik KA
    Transgenic Res; 2017 Feb; 26(1):109-122. PubMed ID: 27687031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Phytase-mediated mineral solubilization from cereals under in vitro gastric conditions.
    Nielsen AV; Meyer AS
    J Sci Food Agric; 2016 Aug; 96(11):3755-61. PubMed ID: 26678688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis.
    Brinch-Pedersen H; Hatzack F; Stöger E; Arcalis E; Pontopidan K; Holm PB
    J Agric Food Chem; 2006 Jun; 54(13):4624-32. PubMed ID: 16787007
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutant Lines of Spring Wheat with Increased Iron, Zinc, and Micronutrients in Grains and Enhanced Bioavailability for Human Health.
    Kenzhebayeva S; Abekova A; Atabayeva S; Yernazarova G; Omirbekova N; Zhang G; Turasheva S; Asrandina S; Sarsu F; Wang Y
    Biomed Res Int; 2019; 2019():9692053. PubMed ID: 31001559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biofortification and bioavailability of Zn, Fe and Se in wheat: present status and future prospects.
    Gupta PK; Balyan HS; Sharma S; Kumar R
    Theor Appl Genet; 2021 Jan; 134(1):1-35. PubMed ID: 33136168
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agronomic Approach of Zinc Biofortification Can Increase Zinc Bioavailability in Wheat Flour and thereby Reduce Zinc Deficiency in Humans.
    Liu D; Liu Y; Zhang W; Chen X; Zou C
    Nutrients; 2017 May; 9(5):. PubMed ID: 28481273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effect of food processing on phytate hydrolysis and availability of iron and zinc.
    Sandberg AS
    Adv Exp Med Biol; 1991; 289():499-508. PubMed ID: 1654732
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Absorption studies show that phytase from Aspergillus niger significantly increases iron and zinc bioavailability from phytate-rich foods.
    Troesch B; Jing H; Laillou A; Fowler A
    Food Nutr Bull; 2013 Jun; 34(2 Suppl):S90-101. PubMed ID: 24050000
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioavailability in infants of iron from infant cereals: effect of dephytinization.
    Davidsson L; Galan P; Cherouvrier F; Kastenmayer P; Juillerat MA; Hercberg S; Hurrell RF
    Am J Clin Nutr; 1997 Apr; 65(4):916-20. PubMed ID: 9094872
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The impact of steeping, germination and hydrothermal processing of wheat (Triticum aestivum L.) grains on phytate hydrolysis and the distribution, speciation and bio-accessibility of iron and zinc elements.
    Lemmens E; De Brier N; Spiers KM; Ryan C; Garrevoet J; Falkenberg G; Goos P; Smolders E; Delcour JA
    Food Chem; 2018 Oct; 264():367-376. PubMed ID: 29853389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability.
    Gibson RS; Bailey KB; Gibbs M; Ferguson EL
    Food Nutr Bull; 2010 Jun; 31(2 Suppl):S134-46. PubMed ID: 20715598
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of iron bioavailability in whole wheat bread by addition of phytase-producing bifidobacteria.
    Sanz-Penella JM; Laparra JM; Sanz Y; Haros M
    J Agric Food Chem; 2012 Mar; 60(12):3190-5. PubMed ID: 22369315
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Biodiversity and phytase capacity of yeasts isolated from Tanzanian togwa.
    Hellström AM; Vázques-Juárez R; Svanberg U; Andlid TA
    Int J Food Microbiol; 2010 Jan; 136(3):352-8. PubMed ID: 19906458
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytase activity of lactic acid bacteria and their impact on the solubility of minerals from wholemeal wheat bread.
    Cizeikiene D; Juodeikiene G; Bartkiene E; Damasius J; Paskevicius A
    Int J Food Sci Nutr; 2015; 66(7):736-42. PubMed ID: 26397032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dietary fiber in weaning cereals: a study of the effect on stool characteristics and absorption of energy, nitrogen, and minerals in healthy infants.
    Davidsson L; Mackenzie J; Kastenmayer P; Rose A; Golden BE; Aggett PJ; Hurrell RF
    J Pediatr Gastroenterol Nutr; 1996 Feb; 22(2):167-79. PubMed ID: 8642490
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bioavailability of iron from wheat aegilops derivatives selected for high grain iron and protein contents.
    Salunke R; Neelam K; Rawat N; Tiwari VK; Randhawa GS; Dhaliwal HS; Roy P
    J Agric Food Chem; 2011 Jul; 59(13):7465-73. PubMed ID: 21675739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Influence of vegetable protein sources on trace element and mineral bioavailability.
    Hurrell RF
    J Nutr; 2003 Sep; 133(9):2973S-7S. PubMed ID: 12949395
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic modification of low phytic acid 1-1 maize to enhance iron content and bioavailability.
    Aluru MR; Rodermel SR; Reddy MB
    J Agric Food Chem; 2011 Dec; 59(24):12954-62. PubMed ID: 22088162
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Iron, zinc and copper content of foods commonly consumed in Mexico].
    López P; Castañeda M; López G; Muñoz E; Rosado JL
    Arch Latinoam Nutr; 1999 Sep; 49(3):287-94. PubMed ID: 10667272
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.