These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
46. Molecular determinants for amyloid fibril formation: lessons from lung surfactant protein C. Johansson J Swiss Med Wkly; 2003 May; 133(19-20):275-82. PubMed ID: 12844270 [TBL] [Abstract][Full Text] [Related]
47. FTIR reveals structural differences between native beta-sheet proteins and amyloid fibrils. Zandomeneghi G; Krebs MR; McCammon MG; Fändrich M Protein Sci; 2004 Dec; 13(12):3314-21. PubMed ID: 15537750 [TBL] [Abstract][Full Text] [Related]
48. A cylinder-shaped double ribbon structure formed by an amyloid hairpin peptide derived from the beta-sheet of murine PrP: an X-ray and molecular dynamics simulation study. Croixmarie V; Briki F; David G; Coïc YM; Ovtracht L; Doucet J; Jamin N; Sanson A J Struct Biol; 2005 Jun; 150(3):284-99. PubMed ID: 15890277 [TBL] [Abstract][Full Text] [Related]
49. X-ray diffraction analysis of scrapie prion: intermediate and folded structures in a peptide containing two putative alpha-helices. Inouye H; Kirschner DA J Mol Biol; 1997 May; 268(2):375-89. PubMed ID: 9159477 [TBL] [Abstract][Full Text] [Related]
50. Laminated morphology of nontwisting beta-sheet fibrils constructed via peptide self-assembly. Lamm MS; Rajagopal K; Schneider JP; Pochan DJ J Am Chem Soc; 2005 Nov; 127(47):16692-700. PubMed ID: 16305260 [TBL] [Abstract][Full Text] [Related]
51. Positional effects of phosphorylation on the stability and morphology of tau-related amyloid fibrils. Inoue M; Konno T; Tainaka K; Nakata E; Yoshida HO; Morii T Biochemistry; 2012 Feb; 51(7):1396-406. PubMed ID: 22304362 [TBL] [Abstract][Full Text] [Related]
52. Vibrational circular dichroism as a probe of fibrillogenesis: the origin of the anomalous intensity enhancement of amyloid-like fibrils. Measey TJ; Schweitzer-Stenner R J Am Chem Soc; 2011 Feb; 133(4):1066-76. PubMed ID: 21186804 [TBL] [Abstract][Full Text] [Related]
53. Molecular mechanism of β-sheet self-organization at water-hydrophobic interfaces. Nikolic A; Baud S; Rauscher S; Pomès R Proteins; 2011 Jan; 79(1):1-22. PubMed ID: 20938982 [TBL] [Abstract][Full Text] [Related]
54. The crowded environment of a reverse micelle induces the formation of β-strand seed structures for nucleating amyloid fibril formation. Yeung PS; Axelsen PH J Am Chem Soc; 2012 Apr; 134(14):6061-3. PubMed ID: 22448820 [TBL] [Abstract][Full Text] [Related]
55. Ethanol induced the formation of β-sheet and amyloid-like fibrils by surfactant-like peptide A6K. Chen Y; Tang C; Xing Z; Zhang J; Qiu F J Pept Sci; 2013 Nov; 19(11):708-16. PubMed ID: 24105725 [TBL] [Abstract][Full Text] [Related]
56. A twisted four-sheeted model for an amyloid fibril. Wang J; Gülich S; Bradford C; Ramirez-Alvarado M; Regan L Structure; 2005 Sep; 13(9):1279-88. PubMed ID: 16154085 [TBL] [Abstract][Full Text] [Related]
57. Steric zipper of the amyloid fibrils formed by residues 109-122 of the Syrian hamster prion protein. Lee SW; Mou Y; Lin SY; Chou FC; Tseng WH; Chen CH; Lu CY; Yu SS; Chan JC J Mol Biol; 2008 May; 378(5):1142-54. PubMed ID: 18423487 [TBL] [Abstract][Full Text] [Related]
58. Amino acid sequence determinants and molecular chaperones in amyloid fibril formation. Nerelius C; Fitzen M; Johansson J Biochem Biophys Res Commun; 2010 May; 396(1):2-6. PubMed ID: 20494101 [TBL] [Abstract][Full Text] [Related]
59. Intramolecular charge interactions as a tool to control the coiled-coil-to-amyloid transformation. Pagel K; Wagner SC; Rezaei Araghi R; von Berlepsch H; Böttcher C; Koksch B Chemistry; 2008; 14(36):11442-51. PubMed ID: 19016556 [TBL] [Abstract][Full Text] [Related]
60. Genetic engineering combined with deep UV resonance Raman spectroscopy for structural characterization of amyloid-like fibrils. Sikirzhytski V; Topilina NI; Higashiya S; Welch JT; Lednev IK J Am Chem Soc; 2008 May; 130(18):5852-3. PubMed ID: 18410104 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]