BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 11880692)

  • 1. Muscle fatigue: the role of metabolism.
    McCully KK; Authier B; Olive J; Clark BJ
    Can J Appl Physiol; 2002 Feb; 27(1):70-82. PubMed ID: 11880692
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study.
    Mizuno T; Takanashi Y; Yoshizaki K; Kondo M
    Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of muscle activation on fatigue and metabolism in human skeletal muscle.
    Russ DW; Vandenborne K; Walter GA; Elliott M; Binder-Macleod SA
    J Appl Physiol (1985); 2002 May; 92(5):1978-86. PubMed ID: 11960948
    [TBL] [Abstract][Full Text] [Related]  

  • 4. In vivo reduction in ATP cost of contraction is not related to fatigue level in stimulated rat gastrocnemius muscle.
    Giannesini B; Izquierdo M; Le Fur Y; Cozzone PJ; Bendahan D
    J Physiol; 2001 Nov; 536(Pt 3):905-15. PubMed ID: 11691882
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicted and measured muscle forces after recoveries of differing durations following fatigue in functional electrical stimulation.
    Mizrahi J; Seelenfreund D; Isakov E; Susak Z
    Artif Organs; 1997 Mar; 21(3):236-9. PubMed ID: 9148714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model of fatigue and recovery in paraplegic's quadriceps muscle subjected to intermittent FES.
    Giat Y; Mizrahi J; Levy M
    J Biomech Eng; 1996 Aug; 118(3):357-66. PubMed ID: 8872258
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue.
    Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS
    J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743
    [TBL] [Abstract][Full Text] [Related]  

  • 8. EMG and metabolite-based prediction of force in paralyzed quadriceps muscle under interrupted stimulation.
    Levin O; Mizrahi J
    IEEE Trans Rehabil Eng; 1999 Sep; 7(3):301-14. PubMed ID: 10498376
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined in situ analysis of metabolic and myoelectrical changes associated with electrically induced fatigue.
    Darques JL; Bendahan D; Roussel M; Giannesini B; Tagliarini F; Le Fur Y; Cozzone PJ; Jammes Y
    J Appl Physiol (1985); 2003 Oct; 95(4):1476-84. PubMed ID: 12819224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dissociation between metabolic and contractile responses during intermittent isometric exercise in man.
    Saugen E; Vøllestad NK; Gibson H; Martin PA; Edwards RH
    Exp Physiol; 1997 Jan; 82(1):213-26. PubMed ID: 9023519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rats bred for low aerobic capacity become promptly fatigued and have slow metabolic recovery after stimulated, maximal muscle contractions.
    Torvinen S; Silvennoinen M; Piitulainen H; Närväinen J; Tuunanen P; Gröhn O; Koch LG; Britton SL; Kainulainen H
    PLoS One; 2012; 7(11):e48345. PubMed ID: 23185253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of length and stimulation frequency on fatigue of the human tibialis anterior muscle.
    Sacco P; McIntyre DB; Jones DA
    J Appl Physiol (1985); 1994 Sep; 77(3):1148-54. PubMed ID: 7836116
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of hypoxia on fatigue development in rat muscle composed of different fibre types.
    Howlett RA; Hogan MC
    Exp Physiol; 2007 Sep; 92(5):887-94. PubMed ID: 17545215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic and nonmetabolic components of fatigue monitored with 31P-NMR.
    Baker AJ; Carson PJ; Miller RG; Weiner MW
    Muscle Nerve; 1994 Sep; 17(9):1002-9. PubMed ID: 8065387
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Similar metabolic perturbations during all-out and constant force exhaustive exercise in humans: a (31)P magnetic resonance spectroscopy study.
    Burnley M; Vanhatalo A; Fulford J; Jones AM
    Exp Physiol; 2010 Jul; 95(7):798-807. PubMed ID: 20360422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of stimulation frequency and pulse duration on fatigue and metabolic cost during a single bout of neuromuscular electrical stimulation.
    Gondin J; Giannesini B; Vilmen C; Dalmasso C; le Fur Y; Cozzone PJ; Bendahan D
    Muscle Nerve; 2010 May; 41(5):667-78. PubMed ID: 20082417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and myoelectrical effects of acute hypoxaemia during isometric contraction of forearm muscles in humans: a combined 31P-magnetic resonance spectroscopy-surface electromyogram (MRS-SEMG) study.
    Bendahan D; Badier M; Jammes Y; Confort-Gouny S; Salvan AM; Guillot C; Cozzone PJ
    Clin Sci (Lond); 1998 Mar; 94(3):279-86. PubMed ID: 9616262
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 31P-magnetic resonance spectroscopy of the rabbit masseter muscle.
    Chang C; DeCrespigny AJ; Chew W; Alcantara M; McNeill C; Miller AJ
    Arch Oral Biol; 1994 Aug; 39(8):665-77. PubMed ID: 7980115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic costs of force generation for constant-frequency and catchlike-inducing electrical stimulation in human tibialis anterior muscle.
    Ratkevicius A; Quistorff B
    Muscle Nerve; 2002 Mar; 25(3):419-26. PubMed ID: 11870720
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The pH heterogeneity in human calf muscle during neuromuscular electrical stimulation.
    Stutzig N; Rzanny R; Moll K; Gussew A; Reichenbach JR; Siebert T
    Magn Reson Med; 2017 Jun; 77(6):2097-2106. PubMed ID: 27436629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.