These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 11880835)
1. Acute thoracolumbar burst fractures: a new view of loading mechanisms. Langrana NA; Harten RD RD; Lin DC; Reiter MF; Lee CK Spine (Phila Pa 1976); 2002 Mar; 27(5):498-508. PubMed ID: 11880835 [TBL] [Abstract][Full Text] [Related]
2. Mechanism of the burst fracture in the thoracolumbar spine. The effect of loading rate. Tran NT; Watson NA; Tencer AF; Ching RP; Anderson PA Spine (Phila Pa 1976); 1995 Sep; 20(18):1984-8. PubMed ID: 8578372 [TBL] [Abstract][Full Text] [Related]
3. Experimental study of thoracolumbar burst fractures. A radiographic and biomechanical analysis of anterior and posterior instrumentation systems. Shono Y; McAfee PC; Cunningham BW Spine (Phila Pa 1976); 1994 Aug; 19(15):1711-22. PubMed ID: 7973965 [TBL] [Abstract][Full Text] [Related]
4. Compressive loading of the spine may affect the spinal canal encroachment of burst fractures. Boisclair D; Mac-Thiong JM; Parent S; Petit Y J Spinal Disord Tech; 2013 Aug; 26(6):342-6. PubMed ID: 22274784 [TBL] [Abstract][Full Text] [Related]
5. A novel method for the reproducible production of thoracolumbar burst fractures in human cadaveric specimens. Jones HL; Crawley AL; Noble PC; Schoenfeld AJ; Weiner BK Spine J; 2011 May; 11(5):447-51. PubMed ID: 21497560 [TBL] [Abstract][Full Text] [Related]
6. Formative mechanism of intracanal fracture fragments in thoracolumbar burst fractures: a finite element study. Zeng ZL; Zhu R; Li SZ; Yu Y; Wang JJ; Jia YW; Chen B; Cheng LM Chin Med J (Engl); 2013; 126(15):2852-8. PubMed ID: 23924455 [TBL] [Abstract][Full Text] [Related]
7. Functional radiographs of acute thoracolumbar burst fractures. A biomechanical study. Lin RM; Panjabi MM; Oxland TR Spine (Phila Pa 1976); 1993 Dec; 18(16):2431-7. PubMed ID: 8303445 [TBL] [Abstract][Full Text] [Related]
8. Development of an experimental model of burst fracture with damage characterization of the vertebral bodies under dynamic conditions. Germaneau A; Vendeuvre T; Saget M; Doumalin P; Dupré JC; Brémand F; Hesser F; Brèque C; Maxy P; Roulaud M; Monlezun O; Rigoard P Clin Biomech (Bristol); 2017 Nov; 49():139-144. PubMed ID: 28938147 [TBL] [Abstract][Full Text] [Related]
9. Surface strain distribution on thoracic and lumbar vertebrae under axial compression. The role in burst fractures. Hongo M; Abe E; Shimada Y; Murai H; Ishikawa N; Sato K Spine (Phila Pa 1976); 1999 Jun; 24(12):1197-202. PubMed ID: 10382245 [TBL] [Abstract][Full Text] [Related]
10. Correlation of Interpedicular Distance with Radiographic Parameters, Neurologic Deficit, and Posterior Structures Injury in Thoracolumbar Burst Fractures. Li Y; Huang M; Xiang J; Lin Y; Wu Y; Wang X World Neurosurg; 2018 Oct; 118():e72-e78. PubMed ID: 29945008 [TBL] [Abstract][Full Text] [Related]
11. Thoracolumbar burst fracture. A biomechanical investigation of its multidirectional flexibility. Panjabi MM; Oxland TR; Lin RM; McGowen TW Spine (Phila Pa 1976); 1994 Mar; 19(5):578-85. PubMed ID: 8184353 [TBL] [Abstract][Full Text] [Related]
12. Pathogenesis of Vertebral Anterior Wedge Deformity: A 2-Stage Process? Landham PR; Gilbert SJ; Baker-Rand HL; Pollintine P; Robson Brown KA; Adams MA; Dolan P Spine (Phila Pa 1976); 2015 Jun; 40(12):902-8. PubMed ID: 25822544 [TBL] [Abstract][Full Text] [Related]
13. Pedicle screw adjustments affect stability of thoracolumbar burst fracture. Oda T; Panjabi MM Spine (Phila Pa 1976); 2001 Nov; 26(21):2328-33. PubMed ID: 11679817 [TBL] [Abstract][Full Text] [Related]
14. The management of acute thoracolumbar burst fractures with anterior corpectomy and Z-plate fixation. McDonough PW; Davis R; Tribus C; Zdeblick TA Spine (Phila Pa 1976); 2004 Sep; 29(17):1901-8; discussion 1909. PubMed ID: 15534413 [TBL] [Abstract][Full Text] [Related]
15. Treatment of thoracolumbar burst fractures by short-segment pedicle screw fixation using a combination of two additional pedicle screws and vertebroplasty at the level of the fracture: a finite element analysis. Liao JC; Chen WP; Wang H BMC Musculoskelet Disord; 2017 Jun; 18(1):262. PubMed ID: 28619021 [TBL] [Abstract][Full Text] [Related]
16. A biomechanical investigation of thoracolumbar burst fracture under vertical impact loads using finite element method. Guo LX; Li WJ Clin Biomech (Bristol); 2019 Aug; 68():29-36. PubMed ID: 31146081 [TBL] [Abstract][Full Text] [Related]
17. The load-sharing classification of thoracolumbar fractures: an in vitro biomechanical validation. Wang XY; Dai LY; Xu HZ; Chi YL Spine (Phila Pa 1976); 2007 May; 32(11):1214-9. PubMed ID: 17495778 [TBL] [Abstract][Full Text] [Related]
18. Functional morphology of the spinal canal after endplate, wedge, and burst fractures. Kifune M; Panjabi MM; Liu W; Arand M; Vasavada A; Oxland T J Spinal Disord; 1997 Dec; 10(6):457-66. PubMed ID: 9438809 [TBL] [Abstract][Full Text] [Related]
19. Validity of the three-column theory of thoracolumbar fractures. A biomechanic investigation. Panjabi MM; Oxland TR; Kifune M; Arand M; Wen L; Chen A Spine (Phila Pa 1976); 1995 May; 20(10):1122-7. PubMed ID: 7638654 [TBL] [Abstract][Full Text] [Related]
20. [Thoracolumbar burst fractures; an experimental study on cadaveric spines and finite element method]. Shirado O Nihon Seikeigeka Gakkai Zasshi; 1993 Jul; 67(7):644-54. PubMed ID: 8409634 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]