These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

59 related articles for article (PubMed ID: 1188152)

  • 1. Calcium uptake and storage in isolated heart mitochondria influenced by sodium and potassium ions.
    Noack E; Greeff K
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():165-70. PubMed ID: 1188152
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na(+)-Ca2+ exchange activity in central nerve endings. I. Ionic conditions that discriminate 45Ca2+ uptake through the exchanger from that occurring through voltage-operated Ca2+ channels.
    Taglialatela M; Di Renzo G; Annunziato L
    Mol Pharmacol; 1990 Sep; 38(3):385-92. PubMed ID: 2169581
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The uptake of potassium ions into isolated heart mitochondria in the presence of calcium ions and k-strophanthin.
    Noack E; Dransfeld H
    Arzneimittelforschung; 1976; 26(8):1538-42. PubMed ID: 1036950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Effect of cardenolids and sodium ion gradient on ATP-dependent Ca2+ accumulation in cardiac sarcolemmal vesicles].
    Preobrazhenskiĭ AN; Kupriianov VV; Saks VA; Grosse R; Spitzer E
    Biokhimiia; 1982 Jan; 47(1):126-36. PubMed ID: 6279179
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of mitochondria in the contraction-relaxation cycle and other Ca2+-dependent activities of heart cells.
    Carafoli E
    Recent Adv Stud Cardiac Struct Metab; 1975; 5():151-63. PubMed ID: 1188151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effect of alkali ions on the accumulation of divalent Ca+2 in mitochondria and vesicles].
    Dransfeld H; Ting BT
    Naunyn Schmiedebergs Arch Exp Pathol Pharmakol; 1969; 263(1):25-6. PubMed ID: 5804283
    [No Abstract]   [Full Text] [Related]  

  • 7. Pathological accumulation of calcium by mitochondria: modulation by magnesium.
    Sordahl LA; Silver BB
    Recent Adv Stud Cardiac Struct Metab; 1975; 6():85-93. PubMed ID: 1197903
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding and effect of tritiated quinidine on cardiac subcellular enzyme systems: sarcomplasmic reticulum vesicles, mitochondria and Na+, K+-adenosine triphosphatase.
    Besch HR; Watanabe AM
    J Pharmacol Exp Ther; 1977 Aug; 202(2):354-64. PubMed ID: 142144
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial uptake of calcium ions and the regulation of cell function.
    Carafoli E
    Biochem Soc Symp; 1974; (39):89-109. PubMed ID: 4143472
    [No Abstract]   [Full Text] [Related]  

  • 10. A comparative study of effects of isoproterenol and dihydroouabain on calcium transients and contraction in cultured rat ventricular cells.
    Tatsukawa Y; Arita M; Kiyosue T; Mikuriya Y; Nasu M
    J Mol Cell Cardiol; 1993 Jun; 25(6):707-20. PubMed ID: 8411196
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The mechanism of ion transport by the Na(+)-Ca2+,K+ exchange in rods isolated from the salamander retina.
    Perry RJ; McNaughton PA
    J Physiol; 1993 Jul; 466():443-80. PubMed ID: 8410702
    [TBL] [Abstract][Full Text] [Related]  

  • 12. [Dependency of Ca++-adsorption by isolated heart muscle mitochondria upon Na+- and K+-concentration as possible explanation for the inotropic effect of digitalis].
    Dransfeld H; Greeff K; Hess D; Schorn A
    Experientia; 1967 May; 23(5):375-7. PubMed ID: 6065777
    [No Abstract]   [Full Text] [Related]  

  • 13. Calcium uptake in mitochondria and vesicles of heart and skeletal muscle in presence of potassium, sodium, k-strophanthin and pentobarbital.
    Dransfeld H; Greeff K; Schorn A; Ting BT
    Biochem Pharmacol; 1969 Jun; 18(6):1335-45. PubMed ID: 5799107
    [No Abstract]   [Full Text] [Related]  

  • 14. Ca2+ transport systems mediating the high K+/low Na+-induced uptake of Ca2+ into rat atrium.
    Lodge NJ
    J Mol Cell Cardiol; 1986 Nov; 18(11):1157-64. PubMed ID: 3795276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of sodium and potassium on calcium uptake by frog skeletal muscle mitochondria and vesicles.
    Batra S
    Can J Physiol Pharmacol; 1972 Dec; 50(12):1157-61. PubMed ID: 4540149
    [No Abstract]   [Full Text] [Related]  

  • 16. The effect of high external K on the Na-activated fraction Ca efflux in goldfish ventricles.
    Busselen P
    Arch Int Pharmacodyn Ther; 1981 Feb; 249(2):309-11. PubMed ID: 7224728
    [No Abstract]   [Full Text] [Related]  

  • 17. The effect of temperature on Na+-stimulated and basal Ca2+ efflux from cardiac and skeletal-muscle mitochondria.
    Heffron JJ; Harris EJ
    Biochem Soc Trans; 1981 Feb; 9(1):82-3. PubMed ID: 7215682
    [No Abstract]   [Full Text] [Related]  

  • 18. Kinetic studies on sodium-dependent calcium uptake by myocardial cells and neuroblastoma cells in culture.
    Wakabayashi S; Goshima K
    Biochim Biophys Acta; 1981 Mar; 642(1):158-72. PubMed ID: 6784764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of lead on the calcium-handling capacity of rat heart mitochondria.
    Parr DR; Harris EJ
    Biochem J; 1976 Aug; 158(2):289-94. PubMed ID: 985429
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Induction of transmembrane proton transfer by mercurials in mitochondria. I. Ion movements accompanying transmembrane proton transfer.
    Southard JH; Penniston JT; Green DE
    J Biol Chem; 1973 May; 248(10):3546-50. PubMed ID: 4702876
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.