BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

251 related articles for article (PubMed ID: 11882295)

  • 1. Signal-dependent translocation of transducin, RGS9-1-Gbeta5L complex, and arrestin to detergent-resistant membrane rafts in photoreceptors.
    Nair KS; Balasubramanian N; Slepak VZ
    Curr Biol; 2002 Mar; 12(5):421-5. PubMed ID: 11882295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effector enzyme regulates the duration of G protein signaling in vertebrate photoreceptors by increasing the affinity between transducin and RGS protein.
    Skiba NP; Hopp JA; Arshavsky VY
    J Biol Chem; 2000 Oct; 275(42):32716-20. PubMed ID: 10973941
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light or tyrosine phosphorylation recruits retinal rod outer segment proteins to lipid rafts.
    Perdomo D; Bubis J
    Biochimie; 2020 Oct; 177():1-12. PubMed ID: 32758687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phosphorylation of the regulator of G protein signaling RGS9-1 by protein kinase A is a potential mechanism of light- and Ca2+-mediated regulation of G protein function in photoreceptors.
    Balasubramanian N; Levay K; Keren-Raifman T; Faurobert E; Slepak VZ
    Biochemistry; 2001 Oct; 40(42):12619-27. PubMed ID: 11601986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Specific binding of RGS9-Gbeta 5L to protein anchor in photoreceptor membranes greatly enhances its catalytic activity.
    Lishko PV; Martemyanov KA; Hopp JA; Arshavsky VY
    J Biol Chem; 2002 Jul; 277(27):24376-81. PubMed ID: 12006596
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Kinetic mechanism of RGS9-1 potentiation by R9AP.
    Baker SA; Martemyanov KA; Shavkunov AS; Arshavsky VY
    Biochemistry; 2006 Sep; 45(35):10690-7. PubMed ID: 16939221
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The GTPase activating factor for transducin in rod photoreceptors is the complex between RGS9 and type 5 G protein beta subunit.
    Makino ER; Handy JW; Li T; Arshavsky VY
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1947-52. PubMed ID: 10051575
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RGS9-G beta 5 substrate selectivity in photoreceptors. Opposing effects of constituent domains yield high affinity of RGS interaction with the G protein-effector complex.
    Skiba NP; Martemyanov KA; Elfenbein A; Hopp JA; Bohm A; Simonds WF; Arshavsky VY
    J Biol Chem; 2001 Oct; 276(40):37365-72. PubMed ID: 11495924
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Light- and guanosine 5'-3-O-(thio)triphosphate-sensitive localization of a G protein and its effector on detergent-resistant membrane rafts in rod photoreceptor outer segments.
    Seno K; Kishimoto M; Abe M; Higuchi Y; Mieda M; Owada Y; Yoshiyama W; Liu H; Hayashi F
    J Biol Chem; 2001 Jun; 276(24):20813-6. PubMed ID: 11319214
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Light-dependent translocation of arrestin in the absence of rhodopsin phosphorylation and transducin signaling.
    Mendez A; Lem J; Simon M; Chen J
    J Neurosci; 2003 Apr; 23(8):3124-9. PubMed ID: 12716919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV; Sezate SS; Cao W; McGinnis JF
    Mol Vis; 2004 Sep; 10():672-81. PubMed ID: 15467522
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin.
    Seno K; Hayashi F
    J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Noncatalytic domains of RGS9-1.Gbeta 5L play a decisive role in establishing its substrate specificity.
    Martemyanov KA; Arshavsky VY
    J Biol Chem; 2002 Sep; 277(36):32843-8. PubMed ID: 12093815
    [TBL] [Abstract][Full Text] [Related]  

  • 14. R7-binding protein targets the G protein beta 5/R7-regulator of G protein signaling complex to lipid rafts in neuronal cells and brain.
    Nini L; Waheed AA; Panicker LM; Czapiga M; Zhang JH; Simonds WF
    BMC Biochem; 2007 Sep; 8():18. PubMed ID: 17880698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Membrane attachment is key to protecting transducin GTPase-activating complex from intracellular proteolysis in photoreceptors.
    Gospe SM; Baker SA; Kessler C; Brucato MF; Winter JR; Burns ME; Arshavsky VY
    J Neurosci; 2011 Oct; 31(41):14660-8. PubMed ID: 21994382
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Loss of retinoschisin (RS1) cell surface protein in maturing mouse rod photoreceptors elevates the luminance threshold for light-driven translocation of transducin but not arrestin.
    Ziccardi L; Vijayasarathy C; Bush RA; Sieving PA
    J Neurosci; 2012 Sep; 32(38):13010-21. PubMed ID: 22993419
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of quenching of phototransduction. Binding competition between arrestin and transducin for phosphorhodopsin.
    Krupnick JG; Gurevich VV; Benovic JL
    J Biol Chem; 1997 Jul; 272(29):18125-31. PubMed ID: 9218446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active transducin alpha subunit carries PDE6 to detergent-resistant membranes in rod photoreceptor outer segments.
    Liu H; Seno K; Hayashi F
    Biochem Biophys Res Commun; 2003 Mar; 303(1):19-23. PubMed ID: 12646160
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The translocation of signaling molecules in dark adapting mammalian rod photoreceptor cells is dependent on the cytoskeleton.
    Reidel B; Goldmann T; Giessl A; Wolfrum U
    Cell Motil Cytoskeleton; 2008 Oct; 65(10):785-800. PubMed ID: 18623243
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.