BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 11882295)

  • 21. Light-induced translocation of RGS9-1 and Gβ5L in mouse rod photoreceptors.
    Tian M; Zallocchi M; Wang W; Chen CK; Palczewski K; Delimont D; Cosgrove D; Peng YW
    PLoS One; 2013; 8(3):e58832. PubMed ID: 23555598
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Photoreceptor calcium sensor proteins in detergent-resistant membrane rafts are regulated via binding to caveolin-1.
    Vladimirov VI; Zernii EY; Baksheeva VE; Wimberg H; Kazakov AS; Tikhomirova NK; Nemashkalova EL; Mitkevich VA; Zamyatnin AA; Lipkin VM; Philippov PP; Permyakov SE; Senin II; Koch KW; Zinchenko DV
    Cell Calcium; 2018 Jul; 73():55-69. PubMed ID: 29684785
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prolonged photoresponses and defective adaptation in rods of Gbeta5-/- mice.
    Krispel CM; Chen CK; Simon MI; Burns ME
    J Neurosci; 2003 Aug; 23(18):6965-71. PubMed ID: 12904457
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Slowed recovery of rod photoresponse in mice lacking the GTPase accelerating protein RGS9-1.
    Chen CK; Burns ME; He W; Wensel TG; Baylor DA; Simon MI
    Nature; 2000 Feb; 403(6769):557-60. PubMed ID: 10676965
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RGS9, a GTPase accelerator for phototransduction.
    He W; Cowan CW; Wensel TG
    Neuron; 1998 Jan; 20(1):95-102. PubMed ID: 9459445
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mutation R238E in transducin-alpha yields a GTPase and effector-deficient, but not dominant-negative, G-protein alpha-subunit.
    Barren B; Natochin M; Artemyev NO
    Mol Vis; 2006 May; 12():492-8. PubMed ID: 16735989
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Analysis of the molecular interaction of the farnesyl moiety of transducin through the use of a photoreactive farnesyl analogue.
    Hagiwara K; Wada A; Katadae M; Ito M; Ohya Y; Casey PJ; Fukada Y
    Biochemistry; 2004 Jan; 43(2):300-9. PubMed ID: 14717583
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional comparison of RGS9 splice isoforms in a living cell.
    Martemyanov KA; Krispel CM; Lishko PV; Burns ME; Arshavsky VY
    Proc Natl Acad Sci U S A; 2008 Dec; 105(52):20988-93. PubMed ID: 19098104
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modulation of transducin GTPase activity by chimeric RGS16 and RGS9 regulators of G protein signaling and the effector molecule.
    McEntaffer RL; Natochin M; Artemyev NO
    Biochemistry; 1999 Apr; 38(16):4931-7. PubMed ID: 10213594
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dependence of RGS9-1 membrane attachment on its C-terminal tail.
    He W; Melia TJ; Cowan CW; Wensel TG
    J Biol Chem; 2001 Dec; 276(52):48961-6. PubMed ID: 11677233
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The interaction network of rhodopsin involving the heterotrimeric G-protein transducin and the monomeric GTPase Rac1 is determined by distinct binding processes.
    Köster M; Dell'Orco D; Koch KW
    FEBS J; 2014 Dec; 281(23):5175-85. PubMed ID: 25243418
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
    Dell'Orco D
    FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity.
    Wagner R; Ryba N; Uhl R
    FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032
    [TBL] [Abstract][Full Text] [Related]  

  • 34. G-protein alpha and beta-gamma subunits interact with conformationally distinct signaling states of rhodopsin.
    Downs MA; Arimoto R; Marshall GR; Kisselev OG
    Vision Res; 2006 Dec; 46(27):4442-8. PubMed ID: 16989885
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Arrestin translocation is induced at a critical threshold of visual signaling and is superstoichiometric to bleached rhodopsin.
    Strissel KJ; Sokolov M; Trieu LH; Arshavsky VY
    J Neurosci; 2006 Jan; 26(4):1146-53. PubMed ID: 16436601
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Activation of RGS9-1GTPase acceleration by its membrane anchor, R9AP.
    Hu G; Zhang Z; Wensel TG
    J Biol Chem; 2003 Apr; 278(16):14550-4. PubMed ID: 12560335
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cyclic GMP and photoreceptor function.
    Lolley RN; Lee RH
    FASEB J; 1990 Sep; 4(12):3001-8. PubMed ID: 1697545
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Light scattering methods to monitor interactions between rhodopsin-containing membranes and soluble proteins.
    Heck M; Pulvermüller A; Hofmann KP
    Methods Enzymol; 2000; 315():329-47. PubMed ID: 10736711
    [No Abstract]   [Full Text] [Related]  

  • 39. Phosducin down-regulation of G-protein coupling: reconstitution of phosducin and transducin of cGMP cascade in bovine rod photoreceptor cells.
    Ho YK; Ting TD; Lee RH
    Methods Enzymol; 2002; 344():126-39. PubMed ID: 11771377
    [No Abstract]   [Full Text] [Related]  

  • 40. Isolation and structure-function characterization of a signaling-active rhodopsin-G protein complex.
    Gao Y; Westfield G; Erickson JW; Cerione RA; Skiniotis G; Ramachandran S
    J Biol Chem; 2017 Aug; 292(34):14280-14289. PubMed ID: 28655769
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.