These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

248 related articles for article (PubMed ID: 11882521)

  • 1. Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators.
    Joost HG; Bell GI; Best JD; Birnbaum MJ; Charron MJ; Chen YT; Doege H; James DE; Lodish HF; Moley KH; Moley JF; Mueckler M; Rogers S; Schürmann A; Seino S; Thorens B
    Am J Physiol Endocrinol Metab; 2002 Apr; 282(4):E974-6. PubMed ID: 11882521
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The extended GLUT-family of sugar/polyol transport facilitators: nomenclature, sequence characteristics, and potential function of its novel members (review).
    Joost HG; Thorens B
    Mol Membr Biol; 2001; 18(4):247-56. PubMed ID: 11780753
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Glucose transporters (GLUT and SGLT): expanded families of sugar transport proteins.
    Wood IS; Trayhurn P
    Br J Nutr; 2003 Jan; 89(1):3-9. PubMed ID: 12568659
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Activity and genomic organization of human glucose transporter 9 (GLUT9), a novel member of the family of sugar-transport facilitators predominantly expressed in brain and leucocytes.
    Doege H; Bocianski A; Joost HG; Schürmann A
    Biochem J; 2000 Sep; 350 Pt 3(Pt 3):771-6. PubMed ID: 10970791
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A highly conserved hydrophobic motif in the exofacial vestibule of fructose transporting SLC2A proteins acts as a critical determinant of their substrate selectivity.
    Manolescu AR; Augustin R; Moley K; Cheeseman C
    Mol Membr Biol; 2007; 24(5-6):455-63. PubMed ID: 17710649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning of a novel member of the GLUT family of transporters, SLC2a10 (GLUT10), localized on chromosome 20q13.1: a candidate gene for NIDDM susceptibility.
    McVie-Wylie AJ; Lamson DR; Chen YT
    Genomics; 2001 Feb; 72(1):113-7. PubMed ID: 11247674
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Nomenclature of laboratory animals].
    Leyten R
    Acta Zool Pathol Antverp; 1975 Nov; (63):7-17. PubMed ID: 1047963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Zen and the art of nomenclature maintenance: a revised approach to respiratory symbols and terminology.
    Primiano FP; Chatburn RL
    Respir Care; 2006 Dec; 51(12):1458-70. PubMed ID: 17134527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The monosaccharide transporter(-like) gene family in Arabidopsis.
    Büttner M
    FEBS Lett; 2007 May; 581(12):2318-24. PubMed ID: 17379213
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural domains that contribute to substrate specificity in facilitated glucose transporters are distinct from those involved in kinetic function: studies with GLUT-1/GLUT-2 chimeras.
    Noel LE; Newgard CB
    Biochemistry; 1997 May; 36(18):5465-75. PubMed ID: 9154929
    [TBL] [Abstract][Full Text] [Related]  

  • 11. RGST - Rat Gene Symbol Tracker, a database for defining official rat gene symbols.
    Petersen G; Ståhl F
    BMC Genomics; 2008 Jan; 9():29. PubMed ID: 18215257
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential regulation of glucose transporter 1 and 2 mRNA expression by epidermal growth factor and transforming growth factor-beta in rat hepatocytes.
    Mischoulon D; Rana B; Kotliar N; Pilch PF; Bucher NL; Farmer SR
    J Cell Physiol; 1992 Nov; 153(2):288-96. PubMed ID: 1429849
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The SLC45 gene family of putative sugar transporters.
    Vitavska O; Wieczorek H
    Mol Aspects Med; 2013; 34(2-3):655-60. PubMed ID: 23506898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Maintaining HNF6 expression prevents AdHNF3beta-mediated decrease in hepatic levels of Glut-2 and glycogen.
    Tan Y; Adami G; Costa RH
    Hepatology; 2002 Apr; 35(4):790-8. PubMed ID: 11915024
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Barbiturate inhibition of GLUT-1 mediated hexose transport in human erythrocytes exhibits substrate dependence for equilibrium exchange but not unidirectional sugar flux.
    el-Barbary A; Fenstermacher JD; Haspel HC
    Biochemistry; 1996 Dec; 35(48):15222-7. PubMed ID: 8952470
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Human rhabdomyosarcoma cells retain insulin-regulated glucose transport activity through glucose transporter 1.
    Ito S; Nemoto T; Satoh S; Sekihara H; Seyama Y; Kubota S
    Arch Biochem Biophys; 2000 Jan; 373(1):72-82. PubMed ID: 10620325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Isolation of cDNAs and tissue specific expression of ovine glucose transporters.
    Bennett BL; Prosser CG; Grigor MR
    Biochem Mol Biol Int; 1995 Sep; 37(1):9-16. PubMed ID: 8653093
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High fat feeding causes insulin resistance and a marked decrease in the expression of glucose transporters (Glut 4) in fat cells of rats.
    Pedersen O; Kahn CR; Flier JS; Kahn BB
    Endocrinology; 1991 Aug; 129(2):771-7. PubMed ID: 1855475
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coexpression of glucose transporters and glucokinase in Xenopus oocytes indicates that both glucose transport and phosphorylation determine glucose utilization.
    Morita H; Yano Y; Niswender KD; May JM; Whitesell RR; Wu L; Printz RL; Granner DK; Magnuson MA; Powers AC
    J Clin Invest; 1994 Oct; 94(4):1373-82. PubMed ID: 7929812
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression and regulation by insulin of GLUT 3 in UMR 106-01, a clonal rat osteosarcoma cell line.
    Thomas DM; Maher F; Rogers SD; Best JD
    Biochem Biophys Res Commun; 1996 Jan; 218(3):789-93. PubMed ID: 8579592
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.