BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 11882666)

  • 1. The perplexing challenges of a pump turned channel.
    Hunt JF
    J Physiol; 2002 Mar; 539(Pt 2):331. PubMed ID: 11882666
    [No Abstract]   [Full Text] [Related]  

  • 2. Use of knock-out mouse models for the study of renal ion channels.
    Barrière H; Tauc M; Poujeol P
    J Membr Biol; 2004 Apr; 198(3):113-24. PubMed ID: 15216413
    [No Abstract]   [Full Text] [Related]  

  • 3. Inhibition of volume-regulated anion channels by expression of the cystic fibrosis transmembrane conductance regulator.
    Vennekens R; Trouet D; Vankeerberghen A; Voets T; Cuppens H; Eggermont J; Cassiman JJ; Droogmans G; Nilius B
    J Physiol; 1999 Feb; 515 ( Pt 1)(Pt 1):75-85. PubMed ID: 9925879
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Influenza A matrix protein M2 downregulates CFTR: inhibition of chloride transport by a proton channel of the viral envelope.
    Vohwinkel CU; Vadász I
    Am J Physiol Lung Cell Mol Physiol; 2013 Jun; 304(12):L813-6. PubMed ID: 23605001
    [No Abstract]   [Full Text] [Related]  

  • 5. Protein-protein interactions among ion channels regulate ion transport in the kidney.
    Boulpaep E
    Bull Mem Acad R Med Belg; 2009; 164(3-4):133-41; discussion 141-2. PubMed ID: 20120088
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The role of cystic fibrosis transmembrane conductance regulator phenylalanine 508 side chain in ion channel gating.
    Cui L; Aleksandrov L; Hou YX; Gentzsch M; Chen JH; Riordan JR; Aleksandrov AA
    J Physiol; 2006 Apr; 572(Pt 2):347-58. PubMed ID: 16484308
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the mechanism of gating defects caused by the R117H mutation in cystic fibrosis transmembrane conductance regulator.
    Yu YC; Sohma Y; Hwang TC
    J Physiol; 2016 Jun; 594(12):3227-44. PubMed ID: 26846474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The cystic fibrosis transmembrane conductance regulator gene and ion channel function in patients with idiopathic pancreatitis.
    Bishop MD; Freedman SD; Zielenski J; Ahmed N; Dupuis A; Martin S; Ellis L; Shea J; Hopper I; Corey M; Kortan P; Haber G; Ross C; Tzountzouris J; Steele L; Ray PN; Tsui LC; Durie PR
    Hum Genet; 2005 Dec; 118(3-4):372-81. PubMed ID: 16193325
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conditional probability analysis of cystic fibrosis transmembrane conductance regulator gating indicates that ATP has multiple effects during the gating cycle.
    Hennager DJ; Ikuma M; Hoshi T; Welsh MJ
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3594-9. PubMed ID: 11248123
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Altered chloride ion channel kinetics associated with the delta F508 cystic fibrosis mutation.
    Dalemans W; Barbry P; Champigny G; Jallat S; Dott K; Dreyer D; Crystal RG; Pavirani A; Lecocq JP; Lazdunski M
    Nature; 1991 Dec 19-26; 354(6354):526-8. PubMed ID: 1722027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cystic fibrosis transmembrane conductance regulator protein: what is its role in cystic fibrosis?
    Richardson PS; Alton EW
    Eur Respir J; 1993 Feb; 6(2):160-2. PubMed ID: 7680321
    [No Abstract]   [Full Text] [Related]  

  • 12. Gating of cystic fibrosis transmembrane conductance regulator chloride channels by adenosine triphosphate hydrolysis. Quantitative analysis of a cyclic gating scheme.
    Zeltwanger S; Wang F; Wang GT; Gillis KD; Hwang TC
    J Gen Physiol; 1999 Apr; 113(4):541-54. PubMed ID: 10102935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Primers on molecular pathways - ion channels: key regulators of pancreatic physiology.
    Banales JM; Gradilone SA
    Pancreatology; 2009; 9(5):556-9. PubMed ID: 19590254
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular basis for the chloride channel activity of cystic fibrosis transmembrane conductance regulator and the consequences of disease-causing mutations.
    Kidd JF; Kogan I; Bear CE
    Curr Top Dev Biol; 2004; 60():215-49. PubMed ID: 15094300
    [No Abstract]   [Full Text] [Related]  

  • 15. Patch clamp on the luminal membrane of exocrine gland acini from frog skin (Rana esculenta) reveals the presence of cystic fibrosis transmembrane conductance regulator-like Cl- channels activated by cyclic AMP.
    Sørensen JB; Larsen EH
    J Gen Physiol; 1998 Jul; 112(1):19-31. PubMed ID: 9649581
    [TBL] [Abstract][Full Text] [Related]  

  • 16. CFTR is a conductance regulator as well as a chloride channel.
    Schwiebert EM; Benos DJ; Egan ME; Stutts MJ; Guggino WB
    Physiol Rev; 1999 Jan; 79(1 Suppl):S145-66. PubMed ID: 9922379
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stoichiometry and novel gating mechanism within the cystic fibrosis transmembrane conductance regulator channel.
    Qian F; Li T; Yang F; Liu L
    Exp Physiol; 2014 Dec; 99(12):1611-23. PubMed ID: 25326525
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Changes Fundamental to Gating of the Cystic Fibrosis Transmembrane Conductance Regulator Anion Channel Pore.
    Linsdell P
    Adv Exp Med Biol; 2017; 925():13-32. PubMed ID: 27311317
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The two ATP binding sites of cystic fibrosis transmembrane conductance regulator (CFTR) play distinct roles in gating kinetics and energetics.
    Zhou Z; Wang X; Liu HY; Zou X; Li M; Hwang TC
    J Gen Physiol; 2006 Oct; 128(4):413-22. PubMed ID: 16966475
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Revisiting cystic fibrosis transmembrane conductance regulator structure and function.
    Hanrahan JW; Wioland MA
    Proc Am Thorac Soc; 2004; 1(1):17-21. PubMed ID: 16113406
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.