BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 11883773)

  • 21. Modulation of the ligand-field anisotropy in a series of ferric low-spin cytochrome c mutants derived from Pseudomonas aeruginosa cytochrome c-551 and Nitrosomonas europaea cytochrome c-552: a nuclear magnetic resonance and electron paramagnetic resonance study.
    Zoppellaro G; Harbitz E; Kaur R; Ensign AA; Bren KL; Andersson KK
    J Am Chem Soc; 2008 Nov; 130(46):15348-60. PubMed ID: 18947229
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Redox state dependence of axial ligand dynamics in Nitrosomonas europaea cytochrome c552.
    Kaur R; Bren KL
    J Phys Chem B; 2013 Dec; 117(49):15720-8. PubMed ID: 23909651
    [TBL] [Abstract][Full Text] [Related]  

  • 23. First evidence for the presence of a hydrogenase in the sulfur-reducing bacterium Desulfuromonas acetoxidans.
    Brugna M; Nitschke W; Toci R; Bruschi M; Giudici-Orticoni MT
    J Bacteriol; 1999 Sep; 181(17):5505-8. PubMed ID: 10464227
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Structure and dynamics of reduced Bacillus pasteurii cytochrome c: oxidation state dependent properties and implications for electron transfer processes.
    Bartalesi I; Bertini I; Rosato A
    Biochemistry; 2003 Jan; 42(3):739-45. PubMed ID: 12534286
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The solution structure of oxidized rat microsomal cytochrome b5.
    Arnesano F; Banci L; Bertini I; Felli IC
    Biochemistry; 1998 Jan; 37(1):173-84. PubMed ID: 9425037
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution structure of the functional domain of Paracoccus denitrificans cytochrome c552 in the reduced state.
    Pristovsek P; Lücke C; Reincke B; Ludwig B; Rüterjans H
    Eur J Biochem; 2000 Jul; 267(13):4205-12. PubMed ID: 10866825
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Solution structure of oxidized horse heart cytochrome c.
    Banci L; Bertini I; Gray HB; Luchinat C; Reddig T; Rosato A; Turano P
    Biochemistry; 1997 Aug; 36(32):9867-77. PubMed ID: 9245419
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Strategic roles of axial histidines in structure formation and redox regulation of tetraheme cytochrome c3.
    Takayama Y; Werbeck ND; Komori H; Morita K; Ozawa K; Higuchi Y; Akutsu H
    Biochemistry; 2008 Sep; 47(36):9405-15. PubMed ID: 18702516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Structure analysis of cytochrome c3 from Desulfovibrio vulgaris Hildenborough at 1.9 A resolution.
    Matias PM; Frazão C; Morais J; Coll M; Carrondo MA
    J Mol Biol; 1993 Dec; 234(3):680-99. PubMed ID: 8254667
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR.
    Qi PX; Beckman RA; Wand AJ
    Biochemistry; 1996 Sep; 35(38):12275-86. PubMed ID: 8823161
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effect of hydrogen-bond networks in controlling reduction potentials in Desulfovibrio vulgaris (Hildenborough) cytochrome C3 probed by site-specific mutagenesis.
    Salgueiro CA; da Costa PN; Turner DL; Messias AC; van Dongen WM; Saraiva LM; Xavier AV
    Biochemistry; 2001 Aug; 40(32):9709-16. PubMed ID: 11583171
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Correlations between the Electronic Properties of Shewanella oneidensis Cytochrome c Nitrite Reductase (ccNiR) and Its Structure: Effects of Heme Oxidation State and Active Site Ligation.
    Stein N; Love D; Judd ET; Elliott SJ; Bennett B; Pacheco AA
    Biochemistry; 2015 Jun; 54(24):3749-58. PubMed ID: 26042961
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization and oxidoreduction properties of cytochrome c3 after heme axial ligand replacements.
    Dolla A; Florens L; Bianco P; Haladjian J; Voordouw G; Forest E; Wall J; Guerlesquin F; Bruschi M
    J Biol Chem; 1994 Mar; 269(9):6340-6. PubMed ID: 8119983
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Family of cytochrome c7-type proteins from Geobacter sulfurreducens: structure of one cytochrome c7 at 1.45 A resolution.
    Pokkuluri PR; Londer YY; Duke NE; Long WC; Schiffer M
    Biochemistry; 2004 Feb; 43(4):849-59. PubMed ID: 14744127
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Further characterization of the two tetraheme cytochromes c3 from Desulfovibiro africanus: nucleotide sequences, EPR spectroscopy and biological activity.
    Magro V; Pieulle L; Forget N; Guigliarelli B; Petillot Y; Hatchikian EC
    Biochim Biophys Acta; 1997 Oct; 1342(2):149-63. PubMed ID: 9392524
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Determination of a high precision structure of a novel protein, Linum usitatissimum trypsin inhibitor (LUTI), using computer-aided assignment of NOESY cross-peaks.
    Cierpicki T; Otlewski J
    J Mol Biol; 2000 Oct; 302(5):1179-92. PubMed ID: 11183783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Protein structure refinement based on paramagnetic NMR shifts: applications to wild-type and mutant forms of cytochrome c.
    Gochin M; Roder H
    Protein Sci; 1995 Feb; 4(2):296-305. PubMed ID: 7757018
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasmon waveguide resonance spectroscopic evidence for differential binding of oxidized and reduced Rhodobacter capsulatus cytochrome c2 to the cytochrome bc1 complex mediated by the conformation of the Rieske iron-sulfur protein.
    Devanathan S; Salamon Z; Tollin G; Fitch JC; Meyer TE; Berry EA; Cusanovich MA
    Biochemistry; 2007 Jun; 46(24):7138-45. PubMed ID: 17516628
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Redox-coupled conformational alternations in cytochrome c(3) from D. vulgaris Miyazaki F on the basis of its reduced solution structure.
    Harada E; Fukuoka Y; Ohmura T; Fukunishi A; Kawai G; Fujiwara T; Akutsu H
    J Mol Biol; 2002 Jun; 319(3):767-78. PubMed ID: 12054869
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Site-directed mutagenesis of tetraheme cytochrome c3. Modification of oxidoreduction potentials after heme axial ligand replacement.
    Mus-Veteau I; Dolla A; Guerlesquin F; Payan F; Czjzek M; Haser R; Bianco P; Haladjian J; Rapp-Giles BJ; Wall JD
    J Biol Chem; 1992 Aug; 267(24):16851-8. PubMed ID: 1324913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.