BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

284 related articles for article (PubMed ID: 11883948)

  • 1. Relationship between the self-splicing activity and the solidity of the master domain of the Tetrahymena group I ribozyme.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2002 Mar; 291(5):1225-31. PubMed ID: 11883948
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanistic investigations of a ribozyme derived from the Tetrahymena group I intron: insights into catalysis and the second step of self-splicing.
    Mei R; Herschlag D
    Biochemistry; 1996 May; 35(18):5796-809. PubMed ID: 8639540
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Conserved base-pairings between C266-A268 and U307-G309 in the P7 of the Tetrahymena ribozyme is nonessential for the in vitro self-splicing reaction.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2001 Jun; 284(4):948-54. PubMed ID: 11409885
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The P4-P6 domain directs higher order folding of the Tetrahymena ribozyme core.
    Doherty EA; Doudna JA
    Biochemistry; 1997 Mar; 36(11):3159-69. PubMed ID: 9115992
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of long-range loop-loop interactions on folding of the Tetrahymena self-splicing RNA.
    Pan J; Woodson SA
    J Mol Biol; 1999 Dec; 294(4):955-65. PubMed ID: 10588899
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A mechanistic framework for the second step of splicing catalyzed by the Tetrahymena ribozyme.
    Bevilacqua PC; Sugimoto N; Turner DH
    Biochemistry; 1996 Jan; 35(2):648-58. PubMed ID: 8555239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of the P7 region within the catalytic core of the Tetrahymena ribozyme by employing in vitro selection.
    Oe Y; Ikawa Y; Shiraishi H; Inoue T
    Nucleic Acids Symp Ser; 2000; (44):197-8. PubMed ID: 12903336
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Probing the folding landscape of the Tetrahymena ribozyme: commitment to form the native conformation is late in the folding pathway.
    Russell R; Herschlag D
    J Mol Biol; 2001 May; 308(5):839-51. PubMed ID: 11352576
    [TBL] [Abstract][Full Text] [Related]  

  • 9. New pathways in folding of the Tetrahymena group I RNA enzyme.
    Russell R; Herschlag D
    J Mol Biol; 1999 Sep; 291(5):1155-67. PubMed ID: 10518951
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Self-assembly of a group I intron active site from its component tertiary structural domains.
    Doudna JA; Cech TR
    RNA; 1995 Mar; 1(1):36-45. PubMed ID: 7489486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Generation of a catalytic module on a self-folding RNA.
    Yoshioka W; Ikawa Y; Jaeger L; Shiraishi H; Inoue T
    RNA; 2004 Dec; 10(12):1900-6. PubMed ID: 15525711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Unusual metal specificity and structure of the group I ribozyme from Chlamydomonas reinhardtii 23S rRNA.
    Kuo TC; Odom OW; Herrin DL
    FEBS J; 2006 Jun; 273(12):2631-44. PubMed ID: 16817892
    [TBL] [Abstract][Full Text] [Related]  

  • 13. RNA reprogramming of alpha-mannosidase mRNA sequences in vitro by myxomycete group IC1 and IE ribozymes.
    Fiskaa T; Lundblad EW; Henriksen JR; Johansen SD; Einvik C
    FEBS J; 2006 Jun; 273(12):2789-800. PubMed ID: 16817905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characterization of P8 and J8/7 elements in the conserved core of the tetrahymena group I intron ribozyme.
    Ikawa Y; Shiraishi H; Inoue T
    Biochem Biophys Res Commun; 2000 Jan; 267(1):85-90. PubMed ID: 10623579
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Folding intermediates of a self-splicing RNA: mispairing of the catalytic core.
    Pan J; Woodson SA
    J Mol Biol; 1998 Jul; 280(4):597-609. PubMed ID: 9677291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fast formation of the P3-P7 pseudoknot: a strategy for efficient folding of the catalytically active ribozyme.
    Zhang L; Xiao M; Lu C; Zhang Y
    RNA; 2005 Jan; 11(1):59-69. PubMed ID: 15574515
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A tyrosyl-tRNA synthetase can function similarly to an RNA structure in the Tetrahymena ribozyme.
    Mohr G; Caprara MG; Guo Q; Lambowitz AM
    Nature; 1994 Jul; 370(6485):147-50. PubMed ID: 8022484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A shortened form of the Tetrahymena thermophila group I intron can catalyze the complete splicing reaction in trans.
    Sargueil B; Tanner NK
    J Mol Biol; 1993 Oct; 233(4):629-43. PubMed ID: 8411170
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A base triple in the Tetrahymena group I core affects the reaction equilibrium via a threshold effect.
    Karbstein K; Tang KH; Herschlag D
    RNA; 2004 Nov; 10(11):1730-9. PubMed ID: 15496521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fast folding mutants of the Tetrahymena group I ribozyme reveal a rugged folding energy landscape.
    Rook MS; Treiber DK; Williamson JR
    J Mol Biol; 1998 Aug; 281(4):609-20. PubMed ID: 9710534
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.