These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
446 related articles for article (PubMed ID: 11884134)
1. Artificial evolution of an enzyme active site: structural studies of three highly active mutants of Escherichia coli alkaline phosphatase. Le Du MH; Lamoure C; Muller BH; Bulgakov OV; Lajeunesse E; Ménez A; Boulain JC J Mol Biol; 2002 Mar; 316(4):941-53. PubMed ID: 11884134 [TBL] [Abstract][Full Text] [Related]
2. Kinetic and X-ray structural studies of a mutant Escherichia coli alkaline phosphatase (His-412-->Gln) at one of the zinc binding sites. Ma L; Kantrowitz ER Biochemistry; 1996 Feb; 35(7):2394-402. PubMed ID: 8652582 [TBL] [Abstract][Full Text] [Related]
3. Kinetic and structural consequences of replacing the aspartate bridge by asparagine in the catalytic metal triad of Escherichia coli alkaline phosphatase. Tibbitts TT; Murphy JE; Kantrowitz ER J Mol Biol; 1996 Apr; 257(3):700-15. PubMed ID: 8648634 [TBL] [Abstract][Full Text] [Related]
4. Metal specificity is correlated with two crucial active site residues in Escherichia coli alkaline phosphatase. Wang J; Stieglitz KA; Kantrowitz ER Biochemistry; 2005 Jun; 44(23):8378-86. PubMed ID: 15938627 [TBL] [Abstract][Full Text] [Related]
5. A revised mechanism for the alkaline phosphatase reaction involving three metal ions. Stec B; Holtz KM; Kantrowitz ER J Mol Biol; 2000 Jun; 299(5):1303-11. PubMed ID: 10873454 [TBL] [Abstract][Full Text] [Related]
6. Kinetic and X-ray structural studies of three mutant E. coli alkaline phosphatases: insights into the catalytic mechanism without the nucleophile Ser102. Stec B; Hehir MJ; Brennan C; Nolte M; Kantrowitz ER J Mol Biol; 1998 Apr; 277(3):647-62. PubMed ID: 9533886 [TBL] [Abstract][Full Text] [Related]
7. Mutations at positions 153 and 328 in Escherichia coli alkaline phosphatase provide insight towards the structure and function of mammalian and yeast alkaline phosphatases. Murphy JE; Tibbitts TT; Kantrowitz ER J Mol Biol; 1995 Nov; 253(4):604-17. PubMed ID: 7473737 [TBL] [Abstract][Full Text] [Related]
8. Improving Escherichia coli alkaline phosphatase efficacy by additional mutations inside and outside the catalytic pocket. Muller BH; Lamoure C; Le Du MH; Cattolico L; Lajeunesse E; Lemaître F; Pearson A; Ducancel F; Ménez A; Boulain JC Chembiochem; 2001 Aug; 2(7-8):517-23. PubMed ID: 11828484 [TBL] [Abstract][Full Text] [Related]
9. Characterization of heterodimeric alkaline phosphatases from Escherichia coli: an investigation of intragenic complementation. Hehir MJ; Murphy JE; Kantrowitz ER J Mol Biol; 2000 Dec; 304(4):645-56. PubMed ID: 11099386 [TBL] [Abstract][Full Text] [Related]
10. Investigation of a catalytic zinc binding site in Escherichia coli L-threonine dehydrogenase by site-directed mutagenesis of cysteine-38. Johnson AR; Chen YW; Dekker EE Arch Biochem Biophys; 1998 Oct; 358(2):211-21. PubMed ID: 9784233 [TBL] [Abstract][Full Text] [Related]
11. Crystal structures of penicillin acylase enzyme-substrate complexes: structural insights into the catalytic mechanism. McVey CE; Walsh MA; Dodson GG; Wilson KS; Brannigan JA J Mol Biol; 2001 Oct; 313(1):139-50. PubMed ID: 11601852 [TBL] [Abstract][Full Text] [Related]
12. Effects of replacing active site residues in a cold-active alkaline phosphatase with those found in its mesophilic counterpart from Escherichia coli. Gudjónsdóttir K; Asgeirsson B FEBS J; 2008 Jan; 275(1):117-27. PubMed ID: 18067583 [TBL] [Abstract][Full Text] [Related]
13. Structure of the wild-type TEM-1 beta-lactamase at 1.55 A and the mutant enzyme Ser70Ala at 2.1 A suggest the mode of noncovalent catalysis for the mutant enzyme. Stec B; Holtz KM; Wojciechowski CL; Kantrowitz ER Acta Crystallogr D Biol Crystallogr; 2005 Aug; 61(Pt 8):1072-9. PubMed ID: 16041072 [TBL] [Abstract][Full Text] [Related]
14. DNA cleavage by EcoRV endonuclease: two metal ions in three metal ion binding sites. Horton NC; Perona JJ Biochemistry; 2004 Jun; 43(22):6841-57. PubMed ID: 15170321 [TBL] [Abstract][Full Text] [Related]
15. Rate-determining step of Escherichia coli alkaline phosphatase altered by the removal of a positive charge at the active center. Sun L; Martin DC; Kantrowitz ER Biochemistry; 1999 Mar; 38(9):2842-8. PubMed ID: 10052956 [TBL] [Abstract][Full Text] [Related]
16. Structure and mechanism of alkaline phosphatase. Coleman JE Annu Rev Biophys Biomol Struct; 1992; 21():441-83. PubMed ID: 1525473 [TBL] [Abstract][Full Text] [Related]
17. Magnesium in the active site of Escherichia coli alkaline phosphatase is important for both structural stabilization and catalysis. Janeway CM; Xu X; Murphy JE; Chaidaroglou A; Kantrowitz ER Biochemistry; 1993 Feb; 32(6):1601-9. PubMed ID: 8431439 [TBL] [Abstract][Full Text] [Related]
18. Structural and functional comparisons of nucleotide pyrophosphatase/phosphodiesterase and alkaline phosphatase: implications for mechanism and evolution. Zalatan JG; Fenn TD; Brunger AT; Herschlag D Biochemistry; 2006 Aug; 45(32):9788-803. PubMed ID: 16893180 [TBL] [Abstract][Full Text] [Related]
19. Ligand-binding and metal-exchange crystallographic studies on shrimp alkaline phosphatase. de Backer MM; McSweeney S; Lindley PF; Hough E Acta Crystallogr D Biol Crystallogr; 2004 Sep; 60(Pt 9):1555-61. PubMed ID: 15333925 [TBL] [Abstract][Full Text] [Related]
20. A functional role for a flexible loop containing Glu182 in the class II fructose-1,6-bisphosphate aldolase from Escherichia coli. Zgiby S; Plater AR; Bates MA; Thomson GJ; Berry A J Mol Biol; 2002 Jan; 315(2):131-40. PubMed ID: 11779234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]