These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
463 related articles for article (PubMed ID: 11884159)
1. A phylogenetic comparison of red deer and wapiti using mitochondrial DNA. Polziehn RO; Strobeck C Mol Phylogenet Evol; 2002 Mar; 22(3):342-56. PubMed ID: 11884159 [TBL] [Abstract][Full Text] [Related]
2. Phylogenetic relationships among european red deer, wapiti, and sika deer inferred from mitochondrial DNA sequences. Kuwayama R; Ozawa T Mol Phylogenet Evol; 2000 Apr; 15(1):115-23. PubMed ID: 10764539 [TBL] [Abstract][Full Text] [Related]
3. Phylogeny of wapiti, red deer, sika deer, and other North American cervids as determined from mitochondrial DNA. Polziehn RO; Strobeck C Mol Phylogenet Evol; 1998 Oct; 10(2):249-58. PubMed ID: 9878235 [TBL] [Abstract][Full Text] [Related]
4. A mitochondrial control region and cytochrome b phylogeny of sika deer (Cervus nippon) and report of tandem repeats in the control region. Cook CE; Wang Y; Sensabaugh G Mol Phylogenet Evol; 1999 Jun; 12(1):47-56. PubMed ID: 10222160 [TBL] [Abstract][Full Text] [Related]
5. Mitochondrial DNA phylogeography of red deer (Cervus elaphus). Ludt CJ; Schroeder W; Rottmann O; Kuehn R Mol Phylogenet Evol; 2004 Jun; 31(3):1064-83. PubMed ID: 15120401 [TBL] [Abstract][Full Text] [Related]
6. Application of mitochondrial DNA sequence analysis in the forensic identification of Chinese sika deer subspecies. Wu H; Wan QH; Fang SG; Zhang SY Forensic Sci Int; 2005 Mar; 148(2-3):101-5. PubMed ID: 15639603 [TBL] [Abstract][Full Text] [Related]
7. Two genetically distinct lineages of the sika deer, Cervus nippon, in Japanese islands: comparison of mitochondrial D-loop region sequences. Nagata J; Masuda R; Tamate HB; Hamasaki Si; Ochiai K; Asada M; Tatsuzawa S; Suda K; Tado H; Yoshida MC Mol Phylogenet Evol; 1999 Dec; 13(3):511-9. PubMed ID: 10620409 [TBL] [Abstract][Full Text] [Related]
8. The complete mitochondrial genome of the domestic red deer (Cervus elaphus) of New Zealand and its phylogenic position within the family Cervidae. Wada K; Okumura K; Nishibori M; Kikkawa Y; Yokohama M Anim Sci J; 2010 Oct; 81(5):551-7. PubMed ID: 20887306 [TBL] [Abstract][Full Text] [Related]
9. Phylogenetic study of complete cytochrome b genes in musk deer (genus Moschus) using museum samples. Su B; Wang YX; Lan H; Wang W; Zhang Y Mol Phylogenet Evol; 1999 Aug; 12(3):241-9. PubMed ID: 10413620 [TBL] [Abstract][Full Text] [Related]
10. Classification and phylogeny of sika deer (Cervus nippon) subspecies based on the mitochondrial control region DNA sequence using an extended sample set. Ba H; Yang F; Xing X; Li C Mitochondrial DNA; 2015 Jun; 26(3):373-9. PubMed ID: 24063645 [TBL] [Abstract][Full Text] [Related]
11. Investigating temporal changes in hybridization and introgression in a predominantly bimodal hybridizing population of invasive sika (Cervus nippon) and native red deer (C. elaphus) on the Kintyre Peninsula, Scotland. Senn HV; Barton NH; Goodman SJ; Swanson GM; Abernethy KA; Pemberton JM Mol Ecol; 2010 Mar; 19(5):910-24. PubMed ID: 20102517 [TBL] [Abstract][Full Text] [Related]
12. Reproductive performance of pubertal red deer (Cervus elaphus) hinds: effects of genetic introgression of wapiti subspecies on pregnancy rates at 18 months of age. Asher GW; Archer JA; Scott IC; O'Neill KT; Ward J; Littlejohn RP Anim Reprod Sci; 2005 Dec; 90(3-4):287-306. PubMed ID: 16298276 [TBL] [Abstract][Full Text] [Related]
13. Sequence analysis and phylogeny of deer (Cervidae) MtDNA control regions. Shi YF; Shan XN; Li J; Shi TY; Zheng AL Yi Chuan Xue Bao; 2004 Apr; 31(4):395-402. PubMed ID: 15487510 [TBL] [Abstract][Full Text] [Related]
14. Mitochondrial DNA and microsatellite analyses of the genetic status of the presumed subspecies Cervus elaphus montanus (Carpathian red deer). Feulner PG; Bielfeldt W; Zachos FE; Bradvarovic J; Eckert I; Hartl GB Heredity (Edinb); 2004 Sep; 93(3):299-306. PubMed ID: 15241451 [TBL] [Abstract][Full Text] [Related]
15. Genetic differentiation between red deer from different sample sites on the Tianshan Mountains (Cervus elaphus), China. Zhou CL; Turdy R; Halik M Mitochondrial DNA; 2015 Feb; 26(1):101-11. PubMed ID: 25431826 [TBL] [Abstract][Full Text] [Related]
16. Genetic analysis of evolutionary relationships among deer (subfamily Cervinae). Emerson BC; Tate ML J Hered; 1993; 84(4):266-73. PubMed ID: 8340615 [TBL] [Abstract][Full Text] [Related]
17. Evolution and phylogeny of old world deer. Pitra C; Fickel J; Meijaard E; Groves PC Mol Phylogenet Evol; 2004 Dec; 33(3):880-95. PubMed ID: 15522810 [TBL] [Abstract][Full Text] [Related]
18. Phylogenetic analysis of Theileria sp. from sika deer, Cervus nippon, in Japan. Inokuma H; Tsuji M; Kim SJ; Fujimoto T; Nagata M; Hosoi E; Arai S; Ishihara C; Okuda M Vet Parasitol; 2004 Apr; 120(4):339-45. PubMed ID: 15063944 [TBL] [Abstract][Full Text] [Related]
19. Complete mitochondrial genome of Cervus elaphus songaricus (Cetartiodactyla: Cervinae) and a phylogenetic analysis with related species. Li Y; Ba H; Yang F Mitochondrial DNA A DNA Mapp Seq Anal; 2016; 27(1):620-1. PubMed ID: 24725059 [TBL] [Abstract][Full Text] [Related]