These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 11884235)

  • 1. Physiologically based modeling of the inhalation kinetics of styrene in humans using a bayesian population approach.
    Jonsson F; Johanson G
    Toxicol Appl Pharmacol; 2002 Feb; 179(1):35-49. PubMed ID: 11884235
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bayesian population analysis of a washin-washout physiologically based pharmacokinetic model for acetone.
    Mörk AK; Jonsson F; Johanson G
    Toxicol Appl Pharmacol; 2009 Nov; 240(3):423-32. PubMed ID: 19660484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Use of Markov Chain Monte Carlo analysis with a physiologically-based pharmacokinetic model of methylmercury to estimate exposures in US women of childbearing age.
    Allen BC; Hack CE; Clewell HJ
    Risk Anal; 2007 Aug; 27(4):947-59. PubMed ID: 17958503
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revised assessment of cancer risk to dichloromethane: part I Bayesian PBPK and dose-response modeling in mice.
    Marino DJ; Clewell HJ; Gentry PR; Covington TR; Hack CE; David RM; Morgott DA
    Regul Toxicol Pharmacol; 2006 Jun; 45(1):44-54. PubMed ID: 16442684
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Physiologically-based pharmacokinetic modeling of benzene in humans: a Bayesian approach.
    Yokley K; Tran HT; Pekari K; Rappaport S; Riihimaki V; Rothman N; Waidyanatha S; Schlosser PM
    Risk Anal; 2006 Aug; 26(4):925-43. PubMed ID: 16948686
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Bayesian analysis of the influence of GSTT1 polymorphism on the cancer risk estimate for dichloromethane.
    Jonsson F; Johanson G
    Toxicol Appl Pharmacol; 2001 Jul; 174(2):99-112. PubMed ID: 11446825
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Bayesian analysis of physiologically based toxicokinetic and toxicodynamic models.
    Hack CE
    Toxicology; 2006 Apr; 221(2-3):241-8. PubMed ID: 16466842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterizing uncertainty and population variability in the toxicokinetics of trichloroethylene and metabolites in mice, rats, and humans using an updated database, physiologically based pharmacokinetic (PBPK) model, and Bayesian approach.
    Chiu WA; Okino MS; Evans MV
    Toxicol Appl Pharmacol; 2009 Nov; 241(1):36-60. PubMed ID: 19660485
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A pharmacokinetic model to describe toxicokinetic interactions between 1,3-butadiene and styrene in rats: predictions for human exposure.
    Filser JG; Johanson G; Kessler W; Kreuzer PE; Stei P; Baur C; Csanády GA
    IARC Sci Publ; 1993; (127):65-78. PubMed ID: 8070888
    [TBL] [Abstract][Full Text] [Related]  

  • 10. PBPK models in risk assessment--A focus on chloroprene.
    DeWoskin RS
    Chem Biol Interact; 2007 Mar; 166(1-3):352-9. PubMed ID: 17324392
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Two-sample scale tests for comparison of metabolic rates for styrene in previously exposed and unexposed groups.
    Chen CC; Wu KY; Balakrishnan N
    Stat Med; 2004 Feb; 23(4):591-9. PubMed ID: 14755391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of the metabolic fate of styrene.
    Sumner SJ; Fennell TR
    Crit Rev Toxicol; 1994; 24 Suppl():S11-33. PubMed ID: 7818768
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bayesian estimation of pharmacokinetic and pharmacodynamic parameters in a mode-of-action-based cancer risk assessment for chloroform.
    Liao KH; Tan YM; Conolly RB; Borghoff SJ; Gargas ML; Andersen ME; Clewell HJ
    Risk Anal; 2007 Dec; 27(6):1535-51. PubMed ID: 18093051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bayesian analysis of a physiologically based pharmacokinetic model for perchloroethylene in humans.
    Qiu J; Chien YC; Bruckner JV; Fisher JW
    J Toxicol Environ Health A; 2010; 73(1):74-91. PubMed ID: 19953421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using population physiologically based pharmacokinetic modeling to determine optimal sampling times and to interpret biological exposure markers: The example of occupational exposure to styrene.
    Verner MA; McDougall R; Johanson G
    Toxicol Lett; 2012 Sep; 213(2):299-304. PubMed ID: 22677344
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of Markov chain Monte Carlo uncertainty analysis to support a Public Health Goal for perchloroethylene.
    Covington TR; Robinan Gentry P; Van Landingham CB; Andersen ME; Kester JE; Clewell HJ
    Regul Toxicol Pharmacol; 2007 Feb; 47(1):1-18. PubMed ID: 16901594
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dose-dependent kinetics of inhaled styrene in man.
    Löf A; Johanson G
    IARC Sci Publ; 1993; (127):89-99. PubMed ID: 8070890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probabilistic dose-response modeling: case study using dichloromethane PBPK model results.
    Marino DJ; Starr TB
    Regul Toxicol Pharmacol; 2007 Dec; 49(3):285-300. PubMed ID: 17949874
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Modeling attainment of steady state of drug concentration in plasma by means of a Bayesian approach using MCMC methods.
    Jordan P; Brunschwig H; Luedin E
    Pharm Stat; 2008; 7(1):36-41. PubMed ID: 17335108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bayesian calibration of a physiologically based pharmacokinetic/pharmacodynamic model of carbaryl cholinesterase inhibition.
    Nong A; Tan YM; Krolski ME; Wang J; Lunchick C; Conolly RB; Clewell HJ
    J Toxicol Environ Health A; 2008; 71(20):1363-81. PubMed ID: 18704829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.