BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

432 related articles for article (PubMed ID: 11884237)

  • 21. Acute and delayed effects of fenthion in young chicks.
    Farage-Elawar M; Francis BM
    J Toxicol Environ Health; 1987; 21(4):455-69. PubMed ID: 2439699
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Relative inhibitory potencies of chlorpyrifos oxon, chlorpyrifos methyl oxon, and mipafox for acetylcholinesterase versus neuropathy target esterase.
    Kropp TJ; Richardson RJ
    J Toxicol Environ Health A; 2003 Jun; 66(12):1145-57. PubMed ID: 12791540
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Phenyl valerate esterases other than neuropathy target esterase and the promotion of organophosphate polyneuropathy.
    Milatovic D; Moretto A; Osman KA; Lotti M
    Chem Res Toxicol; 1997 Sep; 10(9):1045-8. PubMed ID: 9305588
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of multiple dosing of fenthion, fenitrothion, and desbromoleptophos in young chicks.
    Farage-Elawar M; Francis BM
    J Toxicol Environ Health; 1988; 23(2):217-28. PubMed ID: 2449534
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Neuropathy target esterase in mouse whole blood as a biomarker of exposure to neuropathic organophosphorus compounds.
    Makhaeva GF; Rudakova EV; Sigolaeva LV; Kurochkin IN; Richardson RJ
    J Appl Toxicol; 2016 Nov; 36(11):1468-75. PubMed ID: 26970094
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NTE: one target protein for different toxic syndromes with distinct mechanisms?
    Glynn P
    Bioessays; 2003 Aug; 25(8):742-5. PubMed ID: 12879443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Blood acylpeptide hydrolase activity is a sensitive marker for exposure to some organophosphate toxicants.
    Quistad GB; Klintenberg R; Casida JE
    Toxicol Sci; 2005 Aug; 86(2):291-9. PubMed ID: 15888665
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Further studies toward a mouse model for biochemical assessment of neuropathic potential of organophosphorus compounds.
    Makhaeva GF; Rudakova EV; Hein ND; Serebryakova OG; Kovaleva NV; Boltneva NP; Fink JK; Richardson RJ
    J Appl Toxicol; 2014 Dec; 34(12):1426-35. PubMed ID: 24395470
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Interactions in vitro of some organophosphoramidates with neuropathy target esterase and acetylcholinesterase of hen brain.
    Jokanovic M; Johnson MK
    J Biochem Toxicol; 1993 Mar; 8(1):19-31. PubMed ID: 8492300
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [Early manifestations and mechanism of the neurotoxic action of organophosphorus pesticides].
    Kagan IuS; Kokshareva NV; Tkachenko II
    Biull Eksp Biol Med; 1986 Sep; 102(9):310-2. PubMed ID: 3019451
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative in vitro study of the inhibition of human and hen esterases by methamidophos enantiomers.
    Emerick GL; DeOliveira GH; Oliveira RV; Ehrich M
    Toxicology; 2012 Feb; 292(2-3):145-50. PubMed ID: 22198100
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Species susceptibility to delayed toxic neuropathy in relation to in vivo inhibition of neurotoxic esterase by neurotoxic organophosphorus esters.
    Soliman SA; Linder R; Farmer J; Curley A
    J Toxicol Environ Health; 1982 Feb; 9(2):189-97. PubMed ID: 7077681
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Variation between three strains of rat: inhibition of neurotoxic esterase and acetylcholinesterase by tri-o-cresyl phosphate.
    Carrington CD; Abou-Donia MB
    J Toxicol Environ Health; 1988; 25(3):259-68. PubMed ID: 3184197
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lysophosphatidylcholine hydrolases of human erythrocytes, lymphocytes, and brain: sensitive targets of conserved specificity for organophosphorus delayed neurotoxicants.
    Vose SC; Holland NT; Eskenazi B; Casida JE
    Toxicol Appl Pharmacol; 2007 Oct; 224(1):98-104. PubMed ID: 17663017
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of the relative inhibition of acetylcholinesterase and neuropathy target esterase in rats and hens given cholinesterase inhibitors.
    Ehrich M; Jortner BS; Padilla S
    Fundam Appl Toxicol; 1995 Jan; 24(1):94-101. PubMed ID: 7713347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fatty acid amide hydrolase inhibitors display broad selectivity and inhibit multiple carboxylesterases as off-targets.
    Zhang D; Saraf A; Kolasa T; Bhatia P; Zheng GZ; Patel M; Lannoye GS; Richardson P; Stewart A; Rogers JC; Brioni JD; Surowy CS
    Neuropharmacology; 2007 Mar; 52(4):1095-105. PubMed ID: 17217969
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Organophosphate agents induce plasma hypertriglyceridemia in mouse via single or dual inhibition of the endocannabinoid hydrolyzing enzyme(s).
    Suzuki H; Ito Y; Noro Y; Koketsu M; Kamijima M; Tomizawa M
    Toxicol Lett; 2014 Feb; 225(1):153-7. PubMed ID: 24361246
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Interactions between neuropathy target esterase and its inhibitors and the development of polyneuropathy.
    Lotti M; Moretto A; Capodicasa E; Bertolazzi M; Peraica M; Scapellato ML
    Toxicol Appl Pharmacol; 1993 Oct; 122(2):165-71. PubMed ID: 8211998
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Inhibition of brain carboxylesterases by neurotoxic and nonneurotoxic organophosphorus compounds.
    Chemnitius JM; Zech R
    Mol Pharmacol; 1983 May; 23(3):717-23. PubMed ID: 6865914
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3'-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice.
    Russo R; Loverme J; La Rana G; Compton TR; Parrott J; Duranti A; Tontini A; Mor M; Tarzia G; Calignano A; Piomelli D
    J Pharmacol Exp Ther; 2007 Jul; 322(1):236-42. PubMed ID: 17412883
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 22.