These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
209 related articles for article (PubMed ID: 11884349)
1. Large-scale neural model for visual attention: integration of experimental single-cell and fMRI data. Corchs S; Deco G Cereb Cortex; 2002 Apr; 12(4):339-48. PubMed ID: 11884349 [TBL] [Abstract][Full Text] [Related]
2. "What" and "where" in visual working memory: a computational neurodynamical perspective for integrating FMRI and single-neuron data. Deco G; Rolls ET; Horwitz B J Cogn Neurosci; 2004 May; 16(4):683-701. PubMed ID: 15165356 [TBL] [Abstract][Full Text] [Related]
3. Feature-based attention in human visual cortex: simulation of fMRI data. Corchs S; Deco G Neuroimage; 2004 Jan; 21(1):36-45. PubMed ID: 14741640 [TBL] [Abstract][Full Text] [Related]
4. The spatial profile of macaque MT neurons is consistent with Gaussian sampling of logarithmically coordinated visual representation. Kumano H; Uka T J Neurophysiol; 2010 Jul; 104(1):61-75. PubMed ID: 20445031 [TBL] [Abstract][Full Text] [Related]
5. A neural model of the temporal dynamics of figure-ground segregation in motion perception. Raudies F; Neumann H Neural Netw; 2010 Mar; 23(2):160-76. PubMed ID: 19931405 [TBL] [Abstract][Full Text] [Related]
6. The reentry hypothesis: the putative interaction of the frontal eye field, ventrolateral prefrontal cortex, and areas V4, IT for attention and eye movement. Hamker FH Cereb Cortex; 2005 Apr; 15(4):431-47. PubMed ID: 15749987 [TBL] [Abstract][Full Text] [Related]
7. Spatial attention in area V4 is mediated by circuits in primary visual cortex. Tiesinga PH; Buia CI Neural Netw; 2009 Oct; 22(8):1039-54. PubMed ID: 19643574 [TBL] [Abstract][Full Text] [Related]
9. A feedback model of visual attention. Spratling MW; Johnson MH J Cogn Neurosci; 2004 Mar; 16(2):219-37. PubMed ID: 15068593 [TBL] [Abstract][Full Text] [Related]
10. Decoding the visual and subjective contents of the human brain. Kamitani Y; Tong F Nat Neurosci; 2005 May; 8(5):679-85. PubMed ID: 15852014 [TBL] [Abstract][Full Text] [Related]
11. A model of active visual search with object-based attention guiding scan paths. Lanyon LJ; Denham SL Neural Netw; 2004; 17(5-6):873-97. PubMed ID: 15288904 [TBL] [Abstract][Full Text] [Related]
12. Spatial scene representations formed by self-organizing learning in a hippocampal extension of the ventral visual system. Rolls ET; Tromans JM; Stringer SM Eur J Neurosci; 2008 Nov; 28(10):2116-27. PubMed ID: 19046392 [TBL] [Abstract][Full Text] [Related]
13. A mechanistic cortical microcircuit of attention for amplification, normalization and suppression. Beuth F; Hamker FH Vision Res; 2015 Nov; 116(Pt B):241-57. PubMed ID: 25883048 [TBL] [Abstract][Full Text] [Related]
14. Visual Prediction Error Spreads Across Object Features in Human Visual Cortex. Jiang J; Summerfield C; Egner T J Neurosci; 2016 Dec; 36(50):12746-12763. PubMed ID: 27810936 [TBL] [Abstract][Full Text] [Related]
15. There Is a "U" in Clutter: Evidence for Robust Sparse Codes Underlying Clutter Tolerance in Human Vision. Cox PH; Riesenhuber M J Neurosci; 2015 Oct; 35(42):14148-59. PubMed ID: 26490856 [TBL] [Abstract][Full Text] [Related]
16. Visual attention: Linking prefrontal sources to neuronal and behavioral correlates. Clark K; Squire RF; Merrikhi Y; Noudoost B Prog Neurobiol; 2015 Sep; 132():59-80. PubMed ID: 26159708 [TBL] [Abstract][Full Text] [Related]
17. A computational model for the neurobiological substrates of visual attention. de Carvalho LA; Roitman VL Int J Biomed Comput; 1995 Jan; 38(1):33-45. PubMed ID: 7705912 [TBL] [Abstract][Full Text] [Related]
20. The inversion of sensory processing by feedback pathways: a model of visual cognitive functions. Harth E; Unnikrishnan KP; Pandya AS Science; 1987 Jul; 237(4811):184-7. PubMed ID: 3603015 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]