These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 11884738)

  • 1. Structural biology. PMF through the redox loop.
    Richardson D; Sawers G
    Science; 2002 Mar; 295(5561):1842-3. PubMed ID: 11884738
    [No Abstract]   [Full Text] [Related]  

  • 2. Molecular basis of proton motive force generation: structure of formate dehydrogenase-N.
    Jormakka M; Törnroth S; Byrne B; Iwata S
    Science; 2002 Mar; 295(5561):1863-8. PubMed ID: 11884747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystal structure of formate dehydrogenase H: catalysis involving Mo, molybdopterin, selenocysteine, and an Fe4S4 cluster.
    Boyington JC; Gladyshev VN; Khangulov SV; Stadtman TC; Sun PD
    Science; 1997 Feb; 275(5304):1305-8. PubMed ID: 9036855
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protonmotive force generation by a redox loop mechanism.
    Jormakka M; Byrne B; Iwata S
    FEBS Lett; 2003 Jun; 545(1):25-30. PubMed ID: 12788488
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selenium-containing formate dehydrogenase H from Escherichia coli: a molybdopterin enzyme that catalyzes formate oxidation without oxygen transfer.
    Khangulov SV; Gladyshev VN; Dismukes GC; Stadtman TC
    Biochemistry; 1998 Mar; 37(10):3518-28. PubMed ID: 9521673
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reduction and removal of heptavalent technetium from solution by Escherichia coli.
    Lloyd JR; Cole JA; Macaskie LE
    J Bacteriol; 1997 Mar; 179(6):2014-21. PubMed ID: 9068649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate.
    Hartmann T; Leimkühler S
    FEBS J; 2013 Dec; 280(23):6083-96. PubMed ID: 24034888
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Diffusion-controlled generation of a proton-motive force across a biomembrane.
    Smirnov AY; Savel'ev SE; Nori F
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Jul; 80(1 Pt 1):011916. PubMed ID: 19658738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Insights into the respiratory electron transfer pathway from the structure of nitrate reductase A.
    Bertero MG; Rothery RA; Palak M; Hou C; Lim D; Blasco F; Weiner JH; Strynadka NC
    Nat Struct Biol; 2003 Sep; 10(9):681-7. PubMed ID: 12910261
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Architecture of NarGH reveals a structural classification of Mo-bisMGD enzymes.
    Jormakka M; Richardson D; Byrne B; Iwata S
    Structure; 2004 Jan; 12(1):95-104. PubMed ID: 14725769
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Escherichia coli formate to nitrate respiratory pathway: structural analysis.
    Boxer D; Malcolm A; Graham A
    Biochem Soc Trans; 1982 Dec; 10(6):480-1. PubMed ID: 6759195
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxidation-State-Dependent Binding Properties of the Active Site in a Mo-Containing Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Reisner E; Hirst J
    J Am Chem Soc; 2017 Jul; 139(29):9927-9936. PubMed ID: 28635274
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulphur shuttling across a chaperone during molybdenum cofactor maturation.
    Arnoux P; Ruppelt C; Oudouhou F; Lavergne J; Siponen MI; Toci R; Mendel RR; Bittner F; Pignol D; Magalon A; Walburger A
    Nat Commun; 2015 Feb; 6():6148. PubMed ID: 25649206
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Escherichia coli formate-to-nitrate respiratory chain: genetic analysis.
    Haddock BA; Mandrand-Berthelot MA
    Biochem Soc Trans; 1982 Dec; 10(6):478-80. PubMed ID: 6759194
    [No Abstract]   [Full Text] [Related]  

  • 15. Understanding How the Rate of C-H Bond Cleavage Affects Formate Oxidation Catalysis by a Mo-Dependent Formate Dehydrogenase.
    Robinson WE; Bassegoda A; Blaza JN; Reisner E; Hirst J
    J Am Chem Soc; 2020 Jul; 142(28):12226-12236. PubMed ID: 32551568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formate-reduced E. coli formate dehydrogenase H: The reinterpretation of the crystal structure suggests a new reaction mechanism.
    Raaijmakers HC; Romão MJ
    J Biol Inorg Chem; 2006 Oct; 11(7):849-54. PubMed ID: 16830149
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Proton translocation coupled to formate oxidation in anaerobically grown fermenting Escherichia coli.
    Hakobyan M; Sargsyan H; Bagramyan K
    Biophys Chem; 2005 May; 115(1):55-61. PubMed ID: 15848284
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioenergetic aspects of archaeal and bacterial hydrogen metabolism.
    Pinske C
    Adv Microb Physiol; 2019; 74():487-514. PubMed ID: 31126536
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reconstitution "in vitro" of a formate or NADH dependent nitrite reductase activity starting from cytochrome c552 and membrane vesicles from Escherichia coli K-12.
    Sánchez-Crispín JA; Dubourdieu M
    Acta Cient Venez; 1984; 35(5-6):350-5. PubMed ID: 6100410
    [No Abstract]   [Full Text] [Related]  

  • 20. Purification and properties of the formate dehydrogenase and characterization of the fdhA gene of Sulfurospirillum multivorans.
    Schmitz RP; Diekert G
    Arch Microbiol; 2003 Dec; 180(6):394-401. PubMed ID: 14610638
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.