These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 11885265)

  • 1. Role of yeast flavin-containing monooxygenase in maintenance of thiol-disulfide redox potential.
    Suh JK; Robertus JD
    Methods Enzymol; 2002; 348():113-21. PubMed ID: 11885265
    [No Abstract]   [Full Text] [Related]  

  • 2. Redox regulation of yeast flavin-containing monooxygenase.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 2000 Sep; 381(2):317-22. PubMed ID: 11032421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The system biology of thiol redox system in Escherichia coli and yeast: differential functions in oxidative stress, iron metabolism and DNA synthesis.
    Toledano MB; Kumar C; Le Moan N; Spector D; Tacnet F
    FEBS Lett; 2007 Jul; 581(19):3598-607. PubMed ID: 17659286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cytoplasmic glutathione redox status determines survival upon exposure to the thiol-oxidant 4,4'-dipyridyl disulfide.
    López-Mirabal HR; Thorsen M; Kielland-Brandt MC; Toledano MB; Winther JR
    FEMS Yeast Res; 2007 May; 7(3):391-403. PubMed ID: 17253982
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Competition between glutathione and protein thiols for disulphide-bond formation.
    Cuozzo JW; Kaiser CA
    Nat Cell Biol; 1999 Jul; 1(3):130-5. PubMed ID: 10559898
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular cloning and kinetic characterization of a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1996 Dec; 336(2):268-74. PubMed ID: 8954574
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular cloning and characterization of a full-length flavin-dependent monooxygenase from yeast.
    Zhang M; Robertus JD
    Arch Biochem Biophys; 2002 Jul; 403(2):277-83. PubMed ID: 12139977
    [TBL] [Abstract][Full Text] [Related]  

  • 8. S-oxidation of (+)-cis-3,5-dimethyl-2-(3-pyridyl)-thiazolidin-4-one hydrochloride by rat hepatic flavin-containing monooxygenase 1 expressed in yeast.
    Nunoya K; Yokoi T; Itoh K; Itoh S; Kimura K; Kamataki T
    Xenobiotica; 1995 Dec; 25(12):1283-91. PubMed ID: 8719904
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reporter gene transactivation by human p53 is inhibited in thioredoxin reductase null yeast by a mechanism associated with thioredoxin oxidation and independent of changes in the redox state of glutathione.
    Merwin JR; Mustacich DJ; Muller EG; Pearson GD; Merrill GF
    Carcinogenesis; 2002 Oct; 23(10):1609-15. PubMed ID: 12376468
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement of oxidized glutathione fermentation by thiol redox metabolism engineering in Saccharomyces cerevisiae.
    Hara KY; Aoki N; Kobayashi J; Kiriyama K; Nishida K; Araki M; Kondo A
    Appl Microbiol Biotechnol; 2015 Nov; 99(22):9771-8. PubMed ID: 26239069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Yeast flavin-containing monooxygenase is induced by the unfolded protein response.
    Suh JK; Robertus JD
    Proc Natl Acad Sci U S A; 2000 Jan; 97(1):121-6. PubMed ID: 10618381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lysine 219 participates in NADPH specificity in a flavin-containing monooxygenase from Saccharomyces cerevisiae.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Arch Biochem Biophys; 1999 Dec; 372(2):360-6. PubMed ID: 10600176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Disulfide bond catalysts in Escherichia coli.
    Zander T; Phadke ND; Bardwell JC
    Methods Enzymol; 1998; 290():59-74. PubMed ID: 9534151
    [No Abstract]   [Full Text] [Related]  

  • 14. Interchangeable modules in bacterial thiol-disulfide exchange pathways.
    Kouwen TR; van Dijl JM
    Trends Microbiol; 2009 Jan; 17(1):6-12. PubMed ID: 19059781
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Solubility of disulfide-bonded proteins in the cytoplasm of Escherichia coli and its "oxidizing" mutant.
    Xiong S; Wang YF; Ren XR; Li B; Zhang MY; Luo Y; Zhang L; Xie QL; Su KY
    World J Gastroenterol; 2005 Feb; 11(7):1077-82. PubMed ID: 15742420
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Yeast flavin-containing monooxygenase generates oxidizing equivalents that control protein folding in the endoplasmic reticulum.
    Suh JK; Poulsen LL; Ziegler DM; Robertus JD
    Proc Natl Acad Sci U S A; 1999 Mar; 96(6):2687-91. PubMed ID: 10077572
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Saccharomyces cerevisiae proteome of oxidized protein thiols: contrasted functions for the thioredoxin and glutathione pathways.
    Le Moan N; Clement G; Le Maout S; Tacnet F; Toledano MB
    J Biol Chem; 2006 Apr; 281(15):10420-30. PubMed ID: 16418165
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Disulfide stress: a novel type of oxidative stress in acute pancreatitis.
    Moreno ML; Escobar J; Izquierdo-Álvarez A; Gil A; Pérez S; Pereda J; Zapico I; Vento M; Sabater L; Marina A; Martínez-Ruiz A; Sastre J
    Free Radic Biol Med; 2014 May; 70():265-77. PubMed ID: 24456905
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Roles of thiol-redox pathways in bacteria.
    Ritz D; Beckwith J
    Annu Rev Microbiol; 2001; 55():21-48. PubMed ID: 11544348
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developmental changes in the levels and redox potentials of main hemolymph thiols/disulfides in the Jamaican field cricket Gryllus assimilis.
    Sadowska-Bartosz I; Furmaniak P; Bieszczad-Bedrejczuk E; Bartosz G; Głowacki R
    Acta Biochim Pol; 2017; 64(3):503-506. PubMed ID: 28746421
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.