BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 11885283)

  • 1. Redox regulation of protein tyrosine phosphatases by hydrogen peroxide: detecting sulfenic acid intermediates and examining reversible inactivation.
    Denu JM; Tanner KG
    Methods Enzymol; 2002; 348():297-305. PubMed ID: 11885283
    [No Abstract]   [Full Text] [Related]  

  • 2. Specific and reversible inactivation of protein tyrosine phosphatases by hydrogen peroxide: evidence for a sulfenic acid intermediate and implications for redox regulation.
    Denu JM; Tanner KG
    Biochemistry; 1998 Apr; 37(16):5633-42. PubMed ID: 9548949
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Redox regulation of protein tyrosine phosphatase 1B involves a sulphenyl-amide intermediate.
    Salmeen A; Andersen JN; Myers MP; Meng TC; Hinks JA; Tonks NK; Barford D
    Nature; 2003 Jun; 423(6941):769-73. PubMed ID: 12802338
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic and chemical competence of regulation of cdc25 phosphatase by oxidation/reduction.
    Sohn J; Rudolph J
    Biochemistry; 2003 Sep; 42(34):10060-70. PubMed ID: 12939134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein-sulfenic acids: diverse roles for an unlikely player in enzyme catalysis and redox regulation.
    Claiborne A; Yeh JI; Mallett TC; Luba J; Crane EJ; Charrier V; Parsonage D
    Biochemistry; 1999 Nov; 38(47):15407-16. PubMed ID: 10569923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Reversible inactivation of protein-tyrosine phosphatase 1B in A431 cells stimulated with epidermal growth factor.
    Lee SR; Kwon KS; Kim SR; Rhee SG
    J Biol Chem; 1998 Jun; 273(25):15366-72. PubMed ID: 9624118
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An immunochemical approach to detect oxidized protein tyrosine phosphatases using a selective C-nucleophile tag.
    Garcia FJ; Carroll KS
    Mol Biosyst; 2016 May; 12(6):1790-8. PubMed ID: 26757830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Redox regulation of MAP kinase phosphatase 3.
    Seth D; Rudolph J
    Biochemistry; 2006 Jul; 45(28):8476-87. PubMed ID: 16834321
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation state of the active-site cysteine in protein tyrosine phosphatase 1B.
    van Montfort RL; Congreve M; Tisi D; Carr R; Jhoti H
    Nature; 2003 Jun; 423(6941):773-7. PubMed ID: 12802339
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Post-translational regulation of mercaptopyruvate sulfurtransferase via a low redox potential cysteine-sulfenate in the maintenance of redox homeostasis.
    Nagahara N; Katayama A
    J Biol Chem; 2005 Oct; 280(41):34569-76. PubMed ID: 16107337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfenic acid formation in human serum albumin by hydrogen peroxide and peroxynitrite.
    Carballal S; Radi R; Kirk MC; Barnes S; Freeman BA; Alvarez B
    Biochemistry; 2003 Aug; 42(33):9906-14. PubMed ID: 12924939
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reversible oxidation of the membrane distal domain of receptor PTPalpha is mediated by a cyclic sulfenamide.
    Yang J; Groen A; Lemeer S; Jans A; Slijper M; Roe SM; den Hertog J; Barford D
    Biochemistry; 2007 Jan; 46(3):709-19. PubMed ID: 17223692
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox regulation of protein-tyrosine phosphatases.
    den Hertog J; Groen A; van der Wijk T
    Arch Biochem Biophys; 2005 Feb; 434(1):11-5. PubMed ID: 15629103
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation sensitivity of the catalytic cysteine of the protein-tyrosine phosphatases SHP-1 and SHP-2.
    Weibrecht I; Böhmer SA; Dagnell M; Kappert K; Ostman A; Böhmer FD
    Free Radic Biol Med; 2007 Jul; 43(1):100-10. PubMed ID: 17561098
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The redox biochemistry of protein sulfenylation and sulfinylation.
    Lo Conte M; Carroll KS
    J Biol Chem; 2013 Sep; 288(37):26480-8. PubMed ID: 23861405
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic inactivation of protein tyrosine phosphatase CD45 and protein tyrosine phosphatase 1B by polyaromatic quinones.
    Wang Q; Dubé D; Friesen RW; LeRiche TG; Bateman KP; Trimble L; Sanghara J; Pollex R; Ramachandran C; Gresser MJ; Huang Z
    Biochemistry; 2004 Apr; 43(14):4294-303. PubMed ID: 15065873
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Redox-based probes for protein tyrosine phosphatases.
    Leonard SE; Garcia FJ; Goodsell DS; Carroll KS
    Angew Chem Int Ed Engl; 2011 May; 50(19):4423-7. PubMed ID: 21504031
    [No Abstract]   [Full Text] [Related]  

  • 18. Preferential redox regulation of cysteine-based protein tyrosine phosphatases: structural and biochemical diversity.
    Netto LES; Machado LESF
    FEBS J; 2022 Sep; 289(18):5480-5504. PubMed ID: 35490402
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of PTP1B via glutathionylation of the active site cysteine 215.
    Barrett WC; DeGnore JP; König S; Fales HM; Keng YF; Zhang ZY; Yim MB; Chock PB
    Biochemistry; 1999 May; 38(20):6699-705. PubMed ID: 10350489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Redox regulation of protein tyrosine phosphatases: structural and chemical aspects.
    Tanner JJ; Parsons ZD; Cummings AH; Zhou H; Gates KS
    Antioxid Redox Signal; 2011 Jul; 15(1):77-97. PubMed ID: 20919935
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.