These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 11885284)

  • 21. Histone demethylation catalysed by LSD1 is a flavin-dependent oxidative process.
    Forneris F; Binda C; Vanoni MA; Mattevi A; Battaglioli E
    FEBS Lett; 2005 Apr; 579(10):2203-7. PubMed ID: 15811342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mia40 combines thiol oxidase and disulfide isomerase activity to efficiently catalyze oxidative folding in mitochondria.
    Koch JR; Schmid FX
    J Mol Biol; 2014 Dec; 426(24):4087-4098. PubMed ID: 25451030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Isolation of a thermostable enzyme catalyzing disulfide bond formation from the archaebacterium Sulfolobus solfataricus.
    Guagliardi A; Cerchia L; De Rosa M; Rossi M; Bartolucci S
    FEBS Lett; 1992 May; 303(1):27-30. PubMed ID: 1592111
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Redox potentials of active-site bis(cysteinyl) fragments of thiol-protein oxidoreductases.
    Siedler F; Rudolph-Böhner S; Doi M; Musiol HJ; Moroder L
    Biochemistry; 1993 Jul; 32(29):7488-95. PubMed ID: 8338847
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thioltransferase is a specific glutathionyl mixed disulfide oxidoreductase.
    Gravina SA; Mieyal JJ
    Biochemistry; 1993 Apr; 32(13):3368-76. PubMed ID: 8461300
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inter-domain redox communication in flavoenzymes of the quiescin/sulfhydryl oxidase family: role of a thioredoxin domain in disulfide bond formation.
    Raje S; Thorpe C
    Biochemistry; 2003 Apr; 42(15):4560-8. PubMed ID: 12693953
    [TBL] [Abstract][Full Text] [Related]  

  • 27. General specificity of cytoplasmic thioltransferase (thiol:disulfide oxidoreductase) from rat liver for thiol and disulfide substrates.
    Axelsson K; Mannervik B
    Biochim Biophys Acta; 1980 Jun; 613(2):324-36. PubMed ID: 6934831
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular mechanisms regulating oxidative activity of the Ero1 family in the endoplasmic reticulum.
    Tavender TJ; Bulleid NJ
    Antioxid Redox Signal; 2010 Oct; 13(8):1177-87. PubMed ID: 20486761
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Disulfide reduction in major histocompatibility complex class II-restricted antigen processing by interferon-gamma-inducible lysosomal thiol reductase.
    Phan UT; Maric M; Cresswell P
    Methods Enzymol; 2002; 348():43-8. PubMed ID: 11885292
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Thioltransferase.
    Mannervik B; Axelsson K; Larson K
    Methods Enzymol; 1981; 77():281-5. PubMed ID: 7329306
    [No Abstract]   [Full Text] [Related]  

  • 31. Unusual non-enzymatic flavin catalysis enhances understanding of flavoenzymes.
    Argueta EA; Amoh AN; Kafle P; Schneider TL
    FEBS Lett; 2015 Apr; 589(8):880-4. PubMed ID: 25747137
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Erv family of sulfhydryl oxidases.
    Fass D
    Biochim Biophys Acta; 2008 Apr; 1783(4):557-66. PubMed ID: 18155671
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Generating disulfides enzymatically: reaction products and electron acceptors of the endoplasmic reticulum thiol oxidase Ero1p.
    Gross E; Sevier CS; Heldman N; Vitu E; Bentzur M; Kaiser CA; Thorpe C; Fass D
    Proc Natl Acad Sci U S A; 2006 Jan; 103(2):299-304. PubMed ID: 16407158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enzymatic reduction-oxidation of protein disulfides by thioredoxin.
    Holmgren A
    Methods Enzymol; 1984; 107():295-300. PubMed ID: 6390091
    [No Abstract]   [Full Text] [Related]  

  • 35. Flavin-O2 interaction mechanisms and the function of flavin in hydroxylation reactions.
    Hemmerich P
    Ann N Y Acad Sci; 1973; 212():13-26. PubMed ID: 4532474
    [No Abstract]   [Full Text] [Related]  

  • 36. Unprecedented pathway of reducing equivalents in a diflavin-linked disulfide oxidoreductase.
    Buey RM; Arellano JB; López-Maury L; Galindo-Trigo S; Velázquez-Campoy A; Revuelta JL; de Pereda JM; Florencio FJ; Schürmann P; Buchanan BB; Balsera M
    Proc Natl Acad Sci U S A; 2017 Nov; 114(48):12725-12730. PubMed ID: 29133410
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Gain of function in an ERV/ALR sulfhydryl oxidase by molecular engineering of the shuttle disulfide.
    Vitu E; Bentzur M; Lisowsky T; Kaiser CA; Fass D
    J Mol Biol; 2006 Sep; 362(1):89-101. PubMed ID: 16893552
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanism of flavin transfer and oxygen activation by the two-component flavoenzyme styrene monooxygenase.
    Kantz A; Chin F; Nallamothu N; Nguyen T; Gassner GT
    Arch Biochem Biophys; 2005 Oct; 442(1):102-16. PubMed ID: 16140257
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The cyanide-resistant alternative oxidases from the fungi Pichia stipitis and Neurospora crassa are monomeric and lack regulatory features of the plant enzyme.
    Umbach AL; Siedow JN
    Arch Biochem Biophys; 2000 Jun; 378(2):234-45. PubMed ID: 10860541
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Flavoprotein disulfide reductases: advances in chemistry and function.
    Argyrou A; Blanchard JS
    Prog Nucleic Acid Res Mol Biol; 2004; 78():89-142. PubMed ID: 15210329
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.