These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 11885284)

  • 41. Enantioselective Hydrogen Atom Transfer: Discovery of Catalytic Promiscuity in Flavin-Dependent 'Ene'-Reductases.
    Sandoval BA; Meichan AJ; Hyster TK
    J Am Chem Soc; 2017 Aug; 139(33):11313-11316. PubMed ID: 28780870
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Monitoring disulfide bond formation in the eukaryotic cytosol.
    Østergaard H; Tachibana C; Winther JR
    J Cell Biol; 2004 Aug; 166(3):337-45. PubMed ID: 15277542
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Flavin-dependent halogenases involved in secondary metabolism in bacteria.
    van Pée KH; Patallo EP
    Appl Microbiol Biotechnol; 2006 May; 70(6):631-41. PubMed ID: 16544142
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localization and some properties of skin sulfhydryl oxidase.
    Yamada H; Takamori K; Ogawa H
    Arch Dermatol Res; 1987; 279(3):194-7. PubMed ID: 3592748
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Modulating the redox property of a flavin analog through adjustment of its microenvironment in a self-assembled monolayer.
    Carson TD; Tam-Chang SW; Beck HE
    Antioxid Redox Signal; 2001 Oct; 3(5):731-6. PubMed ID: 11761323
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Not every disulfide lasts forever: disulfide bond formation as a redox switch.
    Linke K; Jakob U
    Antioxid Redox Signal; 2003 Aug; 5(4):425-34. PubMed ID: 13678530
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Forming disulfides in the endoplasmic reticulum.
    Oka OB; Bulleid NJ
    Biochim Biophys Acta; 2013 Nov; 1833(11):2425-9. PubMed ID: 23434683
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The intra-mitochondrial localization of flavoproteins previously assigned to the respiratory chain.
    Ragan CI; Garland PB
    Eur J Biochem; 1969 Oct; 10(3):399-410. PubMed ID: 4310544
    [No Abstract]   [Full Text] [Related]  

  • 49. Oxidative protein folding in vitro: a study of the cooperation between quiescin-sulfhydryl oxidase and protein disulfide isomerase.
    Rancy PC; Thorpe C
    Biochemistry; 2008 Nov; 47(46):12047-56. PubMed ID: 18937500
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation o hormonal and secretory granule membrane disulfides by adenohypophysial glutathione: disulfide oxidoreductase.
    Lorenson MY; Lee YC; Jacobs LS
    Life Sci; 1981 May; 28(20):2309-15. PubMed ID: 7253822
    [No Abstract]   [Full Text] [Related]  

  • 51. African swine fever virus pB119L protein is a flavin adenine dinucleotide-linked sulfhydryl oxidase.
    Rodríguez I; Redrejo-Rodríguez M; Rodríguez JM; Alejo A; Salas J; Salas ML
    J Virol; 2006 Apr; 80(7):3157-66. PubMed ID: 16537584
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Use of a site-directed triple mutant to trap intermediates: demonstration that the flavin C(4a)-thiol adduct and reduced flavin are kinetically competent intermediates in mercuric ion reductase.
    Miller SM; Massey V; Ballou D; Williams CH; Distefano MD; Moore MJ; Walsh CT
    Biochemistry; 1990 Mar; 29(11):2831-41. PubMed ID: 2189497
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The physiological functions of mammalian endoplasmic oxidoreductin 1: on disulfides and more.
    Ramming T; Appenzeller-Herzog C
    Antioxid Redox Signal; 2012 May; 16(10):1109-18. PubMed ID: 22220984
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A continuous fluorescence assay for sulfhydryl oxidase.
    Raje S; Glynn NM; Thorpe C
    Anal Biochem; 2002 Aug; 307(2):266-72. PubMed ID: 12202243
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Conservation and diversity of the cellular disulfide bond formation pathways.
    Sevier CS; Kaiser CA
    Antioxid Redox Signal; 2006; 8(5-6):797-811. PubMed ID: 16771671
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Legionella pneumophila utilizes a single-player disulfide-bond oxidoreductase system to manage disulfide bond formation and isomerization.
    Kpadeh ZZ; Day SR; Mills BW; Hoffman PS
    Mol Microbiol; 2015 Mar; 95(6):1054-69. PubMed ID: 25534767
    [TBL] [Abstract][Full Text] [Related]  

  • 57. From structure to redox: The diverse functional roles of disulfides and implications in disease.
    Bechtel TJ; Weerapana E
    Proteomics; 2017 Mar; 17(6):. PubMed ID: 28044432
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Relative contributions of thioltransferase-and thioredoxin-dependent systems in reduction of low-molecular-mass and protein disulphides.
    Mannervik B; Axelsson K; Sundewall AC; Holmgren A
    Biochem J; 1983 Aug; 213(2):519-23. PubMed ID: 6351844
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Genomics perspective on disulfide bond formation.
    Fomenko DE; Gladyshev VN
    Antioxid Redox Signal; 2003 Aug; 5(4):397-402. PubMed ID: 13678527
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Circular dichroism studies of the flavin chromophore and of the relation between redox properties and flavin environment in oxidases and dehydrogenases.
    Edmondson DE; Tollin G
    Biochemistry; 1971 Jan; 10(1):113-24. PubMed ID: 5099590
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.