These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 11885653)

  • 61. Chemical synaptic transmission in the cochlea.
    Puel JL
    Prog Neurobiol; 1995 Dec; 47(6):449-76. PubMed ID: 8787031
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Salicylate enables cochlear arachidonic-acid-sensitive NMDA receptor responses.
    Ruel J; Chabbert C; Nouvian R; Bendris R; Eybalin M; Leger CL; Bourien J; Mersel M; Puel JL
    J Neurosci; 2008 Jul; 28(29):7313-23. PubMed ID: 18632935
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Resolving the structure of inner ear ribbon synapses with STED microscopy.
    Rutherford MA
    Synapse; 2015 May; 69(5):242-55. PubMed ID: 25682928
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Muscarinic receptor subtypes are differentially distributed in the rat cochlea.
    Khan KM; Drescher MJ; Hatfield JS; Khan AM; Drescher DG
    Neuroscience; 2002; 111(2):291-302. PubMed ID: 11983315
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancement of the Medial Olivocochlear System Prevents Hidden Hearing Loss.
    Boero LE; Castagna VC; Di Guilmi MN; Goutman JD; Elgoyhen AB; Gómez-Casati ME
    J Neurosci; 2018 Aug; 38(34):7440-7451. PubMed ID: 30030403
    [TBL] [Abstract][Full Text] [Related]  

  • 66. GluA2-Containing AMPA Receptors Distinguish Ribbon-Associated from Ribbonless Afferent Contacts on Rat Cochlear Hair Cells.
    Martinez-Monedero R; Liu C; Weisz C; Vyas P; Fuchs PA; Glowatzki E
    eNeuro; 2016; 3(2):. PubMed ID: 27257620
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Revisiting the cochlear and central mechanisms of tinnitus and therapeutic approaches.
    Noreña AJ
    Audiol Neurootol; 2015; 20 Suppl 1():53-9. PubMed ID: 25997584
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ultrastructural evaluation of calcitonin gene-related peptide immunoreactivity in the human cochlea and vestibular endorgans.
    Kong WJ; Scholtz AW; Kammen-Jolly K; Glückert R; Hussl B; von Cauvenberg PB; Schrott-Fischer A
    Eur J Neurosci; 2002 Feb; 15(3):487-97. PubMed ID: 11876776
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Molecular organization of a type of peripheral glutamate synapse: the afferent synapses of hair cells in the inner ear.
    Ottersen OP; Takumi Y; Matsubara A; Landsend AS; Laake JH; Usami S
    Prog Neurobiol; 1998 Feb; 54(2):127-48. PubMed ID: 9481795
    [TBL] [Abstract][Full Text] [Related]  

  • 70. EphA7 regulates spiral ganglion innervation of cochlear hair cells.
    Kim YJ; Ibrahim LA; Wang SZ; Yuan W; Evgrafov OV; Knowles JA; Wang K; Tao HW; Zhang LI
    Dev Neurobiol; 2016 Apr; 76(4):452-69. PubMed ID: 26178595
    [TBL] [Abstract][Full Text] [Related]  

  • 71. SMAD4 Defect Causes Auditory Neuropathy Via Specialized Disruption of Cochlear Ribbon Synapses in Mice.
    Liu K; Ji F; Yang G; Hou Z; Sun J; Wang X; Guo W; Sun W; Yang W; Yang X; Yang S
    Mol Neurobiol; 2016 Oct; 53(8):5679-91. PubMed ID: 26491026
    [TBL] [Abstract][Full Text] [Related]  

  • 72. The efferent modulation of mammalian inner hair cell afferents.
    Felix D; Ehrenberger K
    Hear Res; 1992 Dec; 64(1):1-5. PubMed ID: 1362722
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Tunnel crossing fibers and their synaptic connections within the inner hair cell region in the organ of corti in the maturing mouse.
    Sobkowicz HM; Slapnick SM; Nitecka LM; August BK
    Anat Embryol (Berl); 1998 Nov; 198(5):353-70. PubMed ID: 9801057
    [TBL] [Abstract][Full Text] [Related]  

  • 74. No longer falling on deaf ears: mechanisms of degeneration and regeneration of cochlear ribbon synapses.
    Wan G; Corfas G
    Hear Res; 2015 Nov; 329():1-10. PubMed ID: 25937135
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Neurotransmission in the vestibular endorgans--glutamatergic transmission in the afferent synapses of hair cells.
    Usami SI; Takumi Y; Matsubara A; Fujita S; Ottersen OP
    Biol Sci Space; 2001 Dec; 15(4):367-70. PubMed ID: 12101360
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Excitotoxic damage to auditory nerve afferents and spiral ganglion neurons is correlated with developmental upregulation of AMPA and KA receptors.
    Ding D; Qi W; Jiang H; Salvi R
    Hear Res; 2021 Nov; 411():108358. PubMed ID: 34607211
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Localization and developmental expression of BK channels in mammalian cochlear hair cells.
    Hafidi A; Beurg M; Dulon D
    Neuroscience; 2005; 130(2):475-84. PubMed ID: 15664704
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Identification of the subunits of the nicotinic cholinergic receptors in the rat cochlea using RT-PCR and in situ hybridization.
    Morley BJ; Li HS; Hiel H; Drescher DG; Elgoyhen AB
    Brain Res Mol Brain Res; 1998 Jan; 53(1-2):78-87. PubMed ID: 9473597
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Autoradiographic studies of selective amino acid uptake by neural and nonneural elements in the gerbil cochlea.
    Schwartz IR; Ryan AF
    J Electron Microsc Tech; 1990 Jul; 15(3):225-44. PubMed ID: 1973731
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Developmental regulation of glycine receptors at efferent synapses of the murine cochlea.
    Buerbank S; Becker K; Becker CM; Brandt N; Engel J; Knipper M; Schick B; Dlugaiczyk J
    Histochem Cell Biol; 2011 Oct; 136(4):387-98. PubMed ID: 21850450
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.