BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 11885981)

  • 1. Position of residues in transmembrane peptides with respect to the lipid bilayer: a combined lipid Noes and water chemical exchange approach in phospholipid bicelles.
    Glover KJ; Whiles JA; Vold RR; Melacini G
    J Biomol NMR; 2002 Jan; 22(1):57-64. PubMed ID: 11885981
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional structure of the transmembrane domain of Vpu from HIV-1 in aligned phospholipid bicelles.
    Park SH; De Angelis AA; Nevzorov AA; Wu CH; Opella SJ
    Biophys J; 2006 Oct; 91(8):3032-42. PubMed ID: 16861273
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Peptide models of helical hydrophobic transmembrane segments of membrane proteins. 1. Studies of the conformation, intrabilayer orientation, and amide hydrogen exchangeability of Ac-K2-(LA)12-K2-amide.
    Zhang YP; Lewis RN; Henry GD; Sykes BD; Hodges RS; McElhaney RN
    Biochemistry; 1995 Feb; 34(7):2348-61. PubMed ID: 7857945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solid-state NMR studies of a diverged microsomal amino-proximate delta12 desaturase peptide reveal causes of stability in bilayer: tyrosine anchoring and arginine snorkeling.
    Gibbons WJ; Karp ES; Cellar NA; Minto RE; Lorigan GA
    Biophys J; 2006 Feb; 90(4):1249-59. PubMed ID: 16326900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Studies of the minimum hydrophobicity of alpha-helical peptides required to maintain a stable transmembrane association with phospholipid bilayer membranes.
    Lewis RN; Liu F; Krivanek R; Rybar P; Hianik T; Flach CR; Mendelsohn R; Chen Y; Mant CT; Hodges RS; McElhaney RN
    Biochemistry; 2007 Jan; 46(4):1042-54. PubMed ID: 17240988
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NMR solution structure and dynamics of motilin in isotropic phospholipid bicellar solution.
    Andersson A; Mäler L
    J Biomol NMR; 2002 Oct; 24(2):103-12. PubMed ID: 12495026
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methods for studying transmembrane peptides in bicelles: consequences of hydrophobic mismatch and peptide sequence.
    Whiles JA; Glover KJ; Vold RR; Komives EA
    J Magn Reson; 2002; 158(1-2):149-56. PubMed ID: 12419680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Bilayer in small bicelles revealed by lipid-protein interactions using NMR spectroscopy.
    Lee D; Walter KF; Brückner AK; Hilty C; Becker S; Griesinger C
    J Am Chem Soc; 2008 Oct; 130(42):13822-3. PubMed ID: 18817394
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Membrane interactions in small fast-tumbling bicelles as studied by 31P NMR.
    Bodor A; Kövér KE; Mäler L
    Biochim Biophys Acta; 2015 Mar; 1848(3):760-6. PubMed ID: 25497765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct determination of a membrane-peptide interface using the nuclear magnetic resonance cross-saturation method.
    Nakamura T; Takahashi H; Takeuchi K; Kohno T; Wakamatsu K; Shimada I
    Biophys J; 2005 Dec; 89(6):4051-5. PubMed ID: 16169979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. NMR solution structure and membrane interaction of the N-terminal sequence (1-30) of the bovine prion protein.
    Biverståhl H; Andersson A; Gräslund A; Mäler L
    Biochemistry; 2004 Nov; 43(47):14940-7. PubMed ID: 15554701
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure refinement and membrane positioning of selectively labeled OmpX in phospholipid nanodiscs.
    Hagn F; Wagner G
    J Biomol NMR; 2015 Apr; 61(3-4):249-60. PubMed ID: 25430058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Detection of intermolecular NOE interactions in large protein complexes.
    Anglister J; Srivastava G; Naider F
    Prog Nucl Magn Reson Spectrosc; 2016 Nov; 97():40-56. PubMed ID: 27888839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Location of the myristoylated alanine-rich C-kinase substrate (MARCKS) effector domain in negatively charged phospholipid bicelles.
    Ellena JF; Burnitz MC; Cafiso DS
    Biophys J; 2003 Oct; 85(4):2442-8. PubMed ID: 14507707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Isotropic bicelles stabilize the juxtamembrane region of the influenza M2 protein for solution NMR studies.
    Claridge JK; Aittoniemi J; Cooper DM; Schnell JR
    Biochemistry; 2013 Nov; 52(47):8420-9. PubMed ID: 24168642
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of solution structure and lipid micelle location of an engineered membrane peptide by using one NMR experiment and one sample.
    Wang G
    Biochim Biophys Acta; 2007 Dec; 1768(12):3271-81. PubMed ID: 17905196
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Alignment of lysine-anchored membrane peptides under conditions of hydrophobic mismatch: a CD, 15N and 31P solid-state NMR spectroscopy investigation.
    Harzer U; Bechinger B
    Biochemistry; 2000 Oct; 39(43):13106-14. PubMed ID: 11052662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Smaller Nanodiscs are Suitable for Studying Protein Lipid Interactions by Solution NMR.
    Wang X; Mu Z; Li Y; Bi Y; Wang Y
    Protein J; 2015 Jun; 34(3):205-11. PubMed ID: 25980794
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure determination of a membrane protein with two trans-membrane helices in aligned phospholipid bicelles by solid-state NMR spectroscopy.
    De Angelis AA; Howell SC; Nevzorov AA; Opella SJ
    J Am Chem Soc; 2006 Sep; 128(37):12256-67. PubMed ID: 16967977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-resolution mono- and multidimensional magic angle spinning 1H nuclear magnetic resonance of membrane peptides in nondeuterated lipid membranes and H2O.
    Le Guernevé C; Seigneuret M
    Biophys J; 1996 Nov; 71(5):2633-44. PubMed ID: 8913601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.