BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

376 related articles for article (PubMed ID: 11886508)

  • 1. Skin melanin, hemoglobin, and light scattering properties can be quantitatively assessed in vivo using diffuse reflectance spectroscopy.
    Zonios G; Bykowski J; Kollias N
    J Invest Dermatol; 2001 Dec; 117(6):1452-7. PubMed ID: 11886508
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffuse reflectance spectroscopy as a tool to measure the absorption coefficient in skin: South African skin phototypes.
    Karsten AE; Singh A; Karsten PA; Braun MW
    Photochem Photobiol; 2013; 89(1):227-33. PubMed ID: 22891856
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Melanin quantification by in vitro and in vivo analysis of near-infrared fluorescence.
    Kalia S; Zhao J; Zeng H; McLean D; Kollias N; Lui H
    Pigment Cell Melanoma Res; 2018 Jan; 31(1):31-38. PubMed ID: 28805346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chromophore concentrations, absorption and scattering properties of human skin in-vivo.
    Tseng SH; Bargo P; Durkin A; Kollias N
    Opt Express; 2009 Aug; 17(17):14599-617. PubMed ID: 19687939
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A theoretical and experimental study of light absorption and scattering by in vivo skin.
    Dawson JB; Barker DJ; Ellis DJ; Grassam E; Cotterill JA; Fisher GW; Feather JW
    Phys Med Biol; 1980 Jul; 25(4):695-709. PubMed ID: 7454759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. SpectraCam
    Nkengne A; Robic J; Seroul P; Gueheunneux S; Jomier M; Vie K
    Skin Res Technol; 2018 Feb; 24(1):99-107. PubMed ID: 28771832
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An innovative method to measure skin pigmentation.
    Masuda Y; Yamashita T; Hirao T; Takahashi M
    Skin Res Technol; 2009 May; 15(2):224-9. PubMed ID: 19416468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid and accurate estimation of blood saturation, melanin content, and epidermis thickness from spectral diffuse reflectance.
    Yudovsky D; Pilon L
    Appl Opt; 2010 Apr; 49(10):1707-19. PubMed ID: 20357850
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo measurement of skin erythema and pigmentation: new means of implementation of diffuse reflectance spectroscopy with a commercial instrument.
    Stamatas GN; Zmudzka BZ; Kollias N; Beer JZ
    Br J Dermatol; 2008 Sep; 159(3):683-90. PubMed ID: 18510669
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Analysis of the absorbance spectra of skin lesions as a helpful tool for detection of major pathophysiological changes.
    Takiwaki H; Miyaoka Y; Arase S
    Skin Res Technol; 2004 May; 10(2):130-5. PubMed ID: 15059181
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Measuring and imaging of transcutaneous bilirubin, hemoglobin, and melanin based on diffuse reflectance spectroscopy.
    Minakawa M; Wares MA; Nakano K; Haneishi H; Aizu Y; Hayasaki Y; Ikeda T; Nagahara H; Nishidate I
    J Biomed Opt; 2023 Oct; 28(10):107001. PubMed ID: 37915398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An investigation of factors affecting the accuracy of in vivo measurements of skin pigments by reflectance spectrophotometry.
    Hajizadeh-Saffar M; Feather JW; Dawson JB
    Phys Med Biol; 1990 Sep; 35(9):1301-15. PubMed ID: 2236210
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inverse Monte Carlo method in a multilayered tissue model for diffuse reflectance spectroscopy.
    Fredriksson I; Larsson M; Strömberg T
    J Biomed Opt; 2012 Apr; 17(4):047004. PubMed ID: 22559695
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Implementation of a six-around-one optical probe based on diffuse light spectroscopy for study of cerebral properties in a murine mouse model of autism spectrum disorder.
    Kozhuhov A; Tfilin M; Turgeman G; Ornoy A; Yanai J; Abookasis D
    Appl Opt; 2020 Aug; 59(23):6809-6816. PubMed ID: 32788771
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multidiameter single-fiber reflectance spectroscopy of heavily pigmented skin: modeling the inhomogeneous distribution of melanin.
    Zhang XU; van der Zee P; Atzeni I; Faber DJ; van Leeuwen TG; Sterenborg HJCM
    J Biomed Opt; 2019 Dec; 24(12):1-11. PubMed ID: 31820596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin color correction for tissue spectroscopy: demonstration of a novel approach with tissue-mimicking phantoms.
    Soyemi OO; Landry MR; Yang Y; Idwasi PO; Soller BR
    Appl Spectrosc; 2005 Feb; 59(2):237-44. PubMed ID: 15720765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monte Carlo simulation of cutaneous reflectance and fluorescence measurements--the effect of melanin contents and localization.
    Chen R; Huang Z; Lui H; Hamzavi I; McLean DI; Xie S; Zeng H
    J Photochem Photobiol B; 2007 Mar; 86(3):219-26. PubMed ID: 17157523
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In vivo measurement of human dermis by 1064 nm-excited fiber Raman spectroscopy.
    Naito S; Min YK; Sugata K; Osanai O; Kitahara T; Hiruma H; Hamaguchi H
    Skin Res Technol; 2008 Feb; 14(1):18-25. PubMed ID: 18211598
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Blood stasis contributions to the perception of skin pigmentation.
    Stamatas GN; Kollias N
    J Biomed Opt; 2004; 9(2):315-22. PubMed ID: 15065897
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative assessment of skin layers absorption and skin reflectance spectra simulation in the visible and near-infrared spectral regions.
    Meglinski IV; Matcher SJ
    Physiol Meas; 2002 Nov; 23(4):741-53. PubMed ID: 12450273
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.