BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

105 related articles for article (PubMed ID: 11886753)

  • 1. Analysis of the Schwanniomyces occidentalis SWA2 gene promoter in Saccharomyces cerevisiae.
    Carmona TA; Jiménez A; Fernández Lobato M
    FEMS Microbiol Lett; 2002 Jan; 207(1):69-73. PubMed ID: 11886753
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expression of the Schwanniomyces occidentalis SWA2 amylase in Saccharomyces cerevisiae: role of N-glycosylation on activity, stability and secretion.
    Yáñez E; Carmona TA; Tiemblo M; Jiménez A; Fernández-Lobato M
    Biochem J; 1998 Jan; 329 ( Pt 1)(Pt 1):65-71. PubMed ID: 9405276
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Construction of an efficient amylolytic industrial yeast strain containing DNA exclusively derived from yeast.
    Marín D; Jiménez A; Fernández Lobato M
    FEMS Microbiol Lett; 2001 Jul; 201(2):249-53. PubMed ID: 11470369
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation of a new gene (SW A2) encoding an alpha-amylase from Schwanniomyces occidentalis and its expression in Saccharomyces cerevisiae.
    Abarca D; Fernández-Lobato M; del Pozo L; Jiménez A
    FEBS Lett; 1991 Feb; 279(1):41-4. PubMed ID: 1995339
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of an amylolytic industrial strain of Saccharomyces cerevisiae containing the Schwanniomyces occidentalis alpha-amylase gene.
    Kang NY; Park JN; Chin JE; Lee HB; Im SY; Bai S
    Biotechnol Lett; 2003 Nov; 25(21):1847-51. PubMed ID: 14677710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular structure of the SWA2 gene encoding an AMY1-related alpha-amylase from Schwanniomyces occidentalis.
    Claros MG; Abarca D; Fernández-Lobato M; Jiménez A
    Curr Genet; 1993; 24(1-2):75-83. PubMed ID: 8358835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulated overproduction of alpha-amylase by transformation of the amylolytic yeast Schwanniomyces occidentalis.
    Dohmen RJ; Strasser AW; Zitomer RS; Hollenberg CP
    Curr Genet; 1989 May; 15(5):319-25. PubMed ID: 2676205
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of the Hansenula polymorpha maltase gene promoter in H. polymorpha and Saccharomyces cerevisiae1.
    Alamäe T; Pärn P; Viigand K; Karp H
    FEMS Yeast Res; 2003 Nov; 4(2):165-73. PubMed ID: 14613881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characterization of transcriptional regulatory elements in the upstream region of the yeast GLK1 gene.
    Herrero P; Flores L; de la Cera T; Moreno F
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):319-25. PubMed ID: 10510295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nucleotide sequence of the extracellular alpha-amylase gene in the yeast Schwanniomyces occidentalis ATCC 26077.
    Park JC; Bai S; Tai CY; Chun SB
    FEMS Microbiol Lett; 1992 May; 72(1):17-23. PubMed ID: 1612414
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Isolation and expression in Saccharomyces cerevisiae of a gene encoding an alpha-amylase from Schwanniomyces castellii.
    Abarca D; Fernández-Lobato M; Claros MG; Jiménez A
    FEBS Lett; 1989 Sep; 255(2):455-9. PubMed ID: 2676608
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Molecular and functional analysis of a MIG1 homologue from the yeast Schwanniomyces occidentalis.
    Carmona TA; Barrado P; Jiménez A; Fernández Lobato M
    Yeast; 2002 Mar; 19(5):459-65. PubMed ID: 11921094
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple regulatory proteins mediate repression and activation by interaction with the yeast Mig1 binding site.
    Wu J; Trumbly RJ
    Yeast; 1998 Aug; 14(11):985-1000. PubMed ID: 9730278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
    Gancedo JM; Flores CL; Gancedo C
    Biochim Biophys Acta; 2015 Jul; 1850(7):1362-7. PubMed ID: 25810078
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Carbon source-dependent transcriptional regulation of the mitochondrial glycerol-3-phosphate dehydrogenase gene, GUT2, from Saccharomyces cerevisiae.
    Grauslund M; Rønnow B
    Can J Microbiol; 2000 Dec; 46(12):1096-100. PubMed ID: 11142398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification and characterisation of two transcriptional repressor elements within the coding sequence of the Saccharomyces cerevisiae HXK2 gene.
    Herrero P; Ramírez M; Martínez-Campa C; Moreno F
    Nucleic Acids Res; 1996 May; 24(10):1822-8. PubMed ID: 8657561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and characterization of a second alpha-amylase gene (LKA2) from Lipomyces kononenkoae IGC4052B and its expression in Saccharomyces cerevisiae.
    Eksteen JM; Steyn AJ; van Rensburg P; Cordero Otero RR; Pretorius IS
    Yeast; 2003 Jan; 20(1):69-78. PubMed ID: 12489127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct selection shuttle plasmid vector, pPW264, used for cloning the alpha-amylase gene of Schwanniomyces occidentalis.
    Půta F; Smardová I; Varga G; Janderová B
    Folia Microbiol (Praha); 1994; 39(4):255-60. PubMed ID: 7729761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promoter element GTACAAG of the SGA and STA2 genes is a possible target site for repression by the STA10 gene product from Saccharomyces cerevisiae.
    Claros MG; del Pozo L; Abarca D; Jiménez A
    FEMS Microbiol Lett; 1992 Apr; 71(1):57-62. PubMed ID: 1624111
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the alpha-amylase gene of Schwanniomyces occidentalis and the secretion of its gene product in transformants of different yeast genera.
    Strasser AW; Selk R; Dohmen RJ; Niermann T; Bielefeld M; Seeboth P; Tu GH; Hollenberg CP
    Eur J Biochem; 1989 Oct; 184(3):699-706. PubMed ID: 2806251
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.