These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 118877)

  • 1. Cyanine dye as monitor of membrane potentials in Escherichia coli cells and membrane vesicles.
    Letellier L; Shechter E
    Eur J Biochem; 1979 Dec; 102(2):441-7. PubMed ID: 118877
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of lactose translocation in membrane vesicles from Escherichia coli. 2. Effect of imposed delata psi, delta pH, and Delta mu H+.
    Kaczorowski GJ; Robertson DE; Kaback HR
    Biochemistry; 1979 Aug; 18(17):3697-704. PubMed ID: 38837
    [No Abstract]   [Full Text] [Related]  

  • 3. Adenosine 5'-triphosphate synthesis driven by a protonmotive force in membrane vesicles of Escherichia coli.
    Tsuchiya T
    J Bacteriol; 1977 Feb; 129(2):763-9. PubMed ID: 14110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transport of C4-dicarboxylates by anaerobically grown Escherichia coli. Energetics and mechanism of exchange, uptake and efflux.
    Engel P; Krämer R; Unden G
    Eur J Biochem; 1994 Jun; 222(2):605-14. PubMed ID: 8020497
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electrochemical proton gradient in inverted membrane vesicles from Escherichia coli.
    Reenstra WW; Patel L; Rottenberg H; Kaback HR
    Biochemistry; 1980 Jan; 19(1):1-9. PubMed ID: 6986161
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The relationship between the electrochemical proton gradient and active transport in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):854-9. PubMed ID: 14665
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Glucose 6-phosphate transport in membrane vesicles isolated from Escherichia coli: effect of imposed electrical potential and pH gradient.
    LeBlanc G; Rimon G; Kaback HR
    Biochemistry; 1980 May; 19(11):2522-8. PubMed ID: 6992861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Respiration-coupled calcium transport by membrane vesicles from Azotobacter vinelandii.
    Barnes EM; Roberts RR; Bhattacharyya P
    Membr Biochem; 1978; 1(1-2):73-88. PubMed ID: 116111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of inhibitors on the substrate-dependent quenching of 9-aminoacridine fluorescence in inside-out membrane vesicles of Escherichia coli.
    Singh AP; Bragg PD
    Eur J Biochem; 1976 Aug; 67(1):177-86. PubMed ID: 9275
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the energetics of lactose active transport: artificial versus enzyme-associated energy source.
    Chen LI; Chen CH
    Arch Biochem Biophys; 1986 Dec; 251(2):606-15. PubMed ID: 3026249
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The electrochemical proton gradient in Escherichia coli membrane vesicles.
    Ramos S; Kaback HR
    Biochemistry; 1977 Mar; 16(5):848-54. PubMed ID: 14664
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles.
    Ramos S; Schuldiner S; Kaback HR
    Proc Natl Acad Sci U S A; 1976 Jun; 73(6):1892-6. PubMed ID: 6961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Measurements of membrane potentials in Escherichia coli K-12 inner membrane vesicles with the safranine method.
    Huttunen MT; Akerman KE
    Biochim Biophys Acta; 1980 Apr; 597(2):274-84. PubMed ID: 6989399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of an electrochemical proton gradient by lactate efflux in membrane vesicles of Escherichia coli.
    Ten Brink B; Konings WN
    Eur J Biochem; 1980 Oct; 111(1):59-66. PubMed ID: 7002561
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accumulation of lipid-soluble ions and of rubidium as indicators of the electrical potential in membrane vesicles of Escherichia coli.
    Altendorf K; Hirata H; Harold FM
    J Biol Chem; 1975 Feb; 250(4):1405-12. PubMed ID: 1089658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationships between the Na+-H+ antiport activity and the components of the electrochemical proton gradient in Escherichia coli membrane vesicles.
    Bassilana M; Damiano E; Leblanc G
    Biochemistry; 1984 Feb; 23(5):1015-22. PubMed ID: 6324854
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The use of valinomycin, nigericin and trichlorocarbanilide in control of the protonmotive force in Escherichia coli cells.
    Ahmed S; Booth IR
    Biochem J; 1983 Apr; 212(1):105-12. PubMed ID: 6307285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The use of potential-sensitive cyanine dye for studying ion-dependent electrogenic renal transport of organic solutes. Spectrophotometric measurements.
    Kragh-Hansen U; Jørgensen KE; Sheikh MI
    Biochem J; 1982 Nov; 208(2):359-68. PubMed ID: 7159404
    [TBL] [Abstract][Full Text] [Related]  

  • 19. K+-dependent Na+ transport driven by respiration in Escherichia coli cells and membrane vesicles.
    Verkhovskaya ML; Verkhovsky MI; Wikström M
    Biochim Biophys Acta; 1996 Mar; 1273(3):207-16. PubMed ID: 8616158
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation of a membrane potential by sodium-dependent succinate efflux in Selenomonas ruminantium.
    Michel TA; Macy JM
    J Bacteriol; 1990 Mar; 172(3):1430-5. PubMed ID: 2307654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.