BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

233 related articles for article (PubMed ID: 11888214)

  • 1. Effect of salts on the properties of aqueous sugar systems, in relation to biomaterial stabilization. 1. Water sorption behavior and ice crystallization/melting.
    Mazzobre MF; Longinotti MP; Corti HR; Buera MP
    Cryobiology; 2001 Nov; 43(3):199-210. PubMed ID: 11888214
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of sugar-phosphate mixtures on the stability of DPPC membranes in dehydrated systems.
    Ohtake S; Schebor C; Palecek SP; de Pablo JJ
    Cryobiology; 2004 Feb; 48(1):81-9. PubMed ID: 14969685
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of carbohydrate-protein matrices for nutrient delivery.
    Zhou Y; Roos YH
    J Food Sci; 2011 May; 76(4):E368-76. PubMed ID: 22417357
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stability and plasticizing and crystallization effects of vitamins in amorphous sugar systems.
    Zhou Y; Roos YH
    J Agric Food Chem; 2012 Feb; 60(4):1075-83. PubMed ID: 22220563
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Glass transition and time-dependent crystallization behavior of dehydration bioprotectant sugars.
    Schebor C; Mazzobre MF; Buera Mdel P
    Carbohydr Res; 2010 Jan; 345(2):303-8. PubMed ID: 19962131
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant vitrification solution 2 lowers water content and alters freezing behavior in shoot tips during cryoprotection.
    Volk GM; Walters C
    Cryobiology; 2006 Feb; 52(1):48-61. PubMed ID: 16321367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of solution composition on the theoretical prediction of ice nucleation kinetics and thermodynamics.
    Karlsson JO
    Cryobiology; 2010 Feb; 60(1):43-51. PubMed ID: 19615991
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new approach for freezing of aqueous solutions under active control of the nucleation temperature.
    Petersen A; Schneider H; Rau G; Glasmacher B
    Cryobiology; 2006 Oct; 53(2):248-57. PubMed ID: 16887112
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of compression on water sorption, glass transition, and enthalpy relaxation behavior of freeze-dried amorphous sugar matrices.
    Imamura K; Kagotani R; Nomura M; Tanaka K; Kinugawa K; Nakanishi K
    Int J Pharm; 2011 Apr; 408(1-2):76-83. PubMed ID: 21291973
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of the restriction enzyme EcoRI dried with trehalose and other selected glass-forming solutes.
    Rossi S; Buera MP; Moreno S; Chirife J
    Biotechnol Prog; 1997; 13(5):609-16. PubMed ID: 9336981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collapse temperature of solutions important for lyopreservation of living cells at ambient temperature.
    Yang G; Gilstrap K; Zhang A; Xu LX; He X
    Biotechnol Bioeng; 2010 Jun; 106(2):247-59. PubMed ID: 20148402
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigating the moisture sorption behavior of amorphous sucrose using a dynamic humidity generating instrument.
    Yu X; Kappes SM; Bello-Perez LA; Schmidt SJ
    J Food Sci; 2008 Jan; 73(1):E25-35. PubMed ID: 18211350
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Diffusion-viscosity decoupling in supercooled aqueous trehalose solutions.
    Corti HR; Frank GA; Marconi MC
    J Phys Chem B; 2008 Oct; 112(41):12899-906. PubMed ID: 18811196
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of tertiary butyl alcohol and volatile salts on the sublimation of ice from frozen sucrose solutions: implications for freeze-drying.
    Oesterle J; Franks F; Auffret T
    Pharm Dev Technol; 1998 May; 3(2):175-83. PubMed ID: 9653754
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of tetrasodium tripolyphosphate on the freeze-concentrated glass-like transition temperature of sugar aqueous solutions.
    Kawai K; Suzuki T
    Cryo Letters; 2006; 27(2):107-14. PubMed ID: 16794742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermophysical properties of aqueous and frozen states of BSA/water/Tris systems.
    Hottot A; Daoussi R; Andrieu J
    Int J Biol Macromol; 2006 May; 38(3-5):225-31. PubMed ID: 16616363
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Trehalose amorphization and recrystallization.
    Sussich F; Cesàro A
    Carbohydr Res; 2008 Oct; 343(15):2667-74. PubMed ID: 18768170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Stable sugar-based protein formulations by supercritical fluid drying.
    Jovanović N; Bouchard A; Sutter M; Van Speybroeck M; Hofland GW; Witkamp GJ; Crommelin DJ; Jiskoot W
    Int J Pharm; 2008 Jan; 346(1-2):102-8. PubMed ID: 17659851
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of pH, counter ion, and phosphate concentration on the glass transition temperature of freeze-dried sugar-phosphate mixtures.
    Ohtake S; Schebor C; Palecek SP; de Pablo JJ
    Pharm Res; 2004 Sep; 21(9):1615-21. PubMed ID: 15497687
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The glass transition temperatures of amorphous trehalose-water mixtures and the mobility of water: an experimental and in silico study.
    Simperler A; Kornherr A; Chopra R; Jones W; Motherwell WD; Zifferer G
    Carbohydr Res; 2007 Aug; 342(11):1470-9. PubMed ID: 17511976
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.