These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Extra- and intra-cellular ice formation in Stage I and II Xenopus laevis oocytes. Guenther JF; Seki S; Kleinhans FW; Edashige K; Roberts DM; Mazur P Cryobiology; 2006 Jun; 52(3):401-16. PubMed ID: 16600207 [TBL] [Abstract][Full Text] [Related]
4. Extra- and intra-cellular ice formation of red seabream (Pagrus major) embryos at different cooling rates. Li J; Zhang LL; Liu QH; Xu XZ; Xiao ZZ; Ma DY; Xu SH; Xue QZ Cryobiology; 2009 Aug; 59(1):48-53. PubMed ID: 19375414 [TBL] [Abstract][Full Text] [Related]
5. Cryopreservation of germinal vesicle stage porcine oocytes based on intracellular ice formation assessment. Yang CY; Chen MC; Lee PT; Lin TT Cryo Letters; 2012; 33(5):349-62. PubMed ID: 23224368 [TBL] [Abstract][Full Text] [Related]
6. Intracellular ice formation during the freezing of hepatocytes cultured in a double collagen gel. Hubel A; Toner M; Cravalho EG; Yarmush ML; Tompkins RG Biotechnol Prog; 1991; 7(6):554-9. PubMed ID: 1367755 [TBL] [Abstract][Full Text] [Related]
7. Extra- and intracellular ice formation in mouse oocytes. Mazur P; Seki S; Pinn IL; Kleinhans FW; Edashige K Cryobiology; 2005 Aug; 51(1):29-53. PubMed ID: 15975568 [TBL] [Abstract][Full Text] [Related]
8. Osmometric behavior, hydraulic conductivity, and incidence of intracellular ice formation in bovine oocytes at different developmental stages. Ruffing NA; Steponkus PL; Pitt RE; Parks JE Cryobiology; 1993 Dec; 30(6):562-80. PubMed ID: 8306705 [TBL] [Abstract][Full Text] [Related]
9. High ice nucleation temperature of zebrafish embryos: slow-freezing is not an option. Hagedorn M; Peterson A; Mazur P; Kleinhans FW Cryobiology; 2004 Oct; 49(2):181-9. PubMed ID: 15351689 [TBL] [Abstract][Full Text] [Related]
10. Survival of Pacific oyster, Crassostrea gigas, oocytes in relation to intracellular ice formation. Salinas-Flores L; Adams SL; Wharton DA; Downes MF; Lim MH Cryobiology; 2008 Feb; 56(1):28-35. PubMed ID: 18045585 [TBL] [Abstract][Full Text] [Related]
11. Freezing and cryoprotective dehydration in an Antarctic nematode (Panagrolaimus davidi) visualised using a freeze substitution technique. Wharton DA; Downes MF; Goodall G; Marshall CJ Cryobiology; 2005 Feb; 50(1):21-8. PubMed ID: 15710366 [TBL] [Abstract][Full Text] [Related]
12. Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes. Trad FS; Toner M; Biggers JD Hum Reprod; 1999 Jun; 14(6):1569-77. PubMed ID: 10357978 [TBL] [Abstract][Full Text] [Related]
13. A theoretical model of intracellular devitrification. Karlsson JO Cryobiology; 2001 May; 42(3):154-69. PubMed ID: 11578115 [TBL] [Abstract][Full Text] [Related]
14. Biotransport phenomena in freezing mammalian oocytes. Yang G; Veres M; Szalai G; Zhang A; Xu LX; He X Ann Biomed Eng; 2011 Jan; 39(1):580-91. PubMed ID: 20848315 [TBL] [Abstract][Full Text] [Related]
15. Systematic parameter optimization of a Me(2)SO- and serum-free cryopreservation protocol for human mesenchymal stem cells. Freimark D; Sehl C; Weber C; Hudel K; Czermak P; Hofmann N; Spindler R; Glasmacher B Cryobiology; 2011 Oct; 63(2):67-75. PubMed ID: 21620818 [TBL] [Abstract][Full Text] [Related]
16. Cryomicroscopic analysis of intracellular ice formation during freezing of mouse oocytes without cryoadditives. Toner M; Cravalho EG; Karel M; Armant DR Cryobiology; 1991 Feb; 28(1):55-71. PubMed ID: 2015761 [TBL] [Abstract][Full Text] [Related]
17. Effect of cooling rate and cryoprotectant concentration on intracellular ice formation of small abalone (Haliotis diversicolor) eggs. Yang CY; Yeh YH; Lee PT; Lin TT Cryobiology; 2013 Aug; 67(1):7-16. PubMed ID: 23619025 [TBL] [Abstract][Full Text] [Related]