These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 11888268)

  • 1. Conformation and stability of alpha-helical membrane proteins. 1. Influence of salts on conformational equilibria between active and Inactive states of rhodopsin.
    Vogel R; Siebert F
    Biochemistry; 2002 Mar; 41(11):3529-35. PubMed ID: 11888268
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation and stability of alpha-helical membrane proteins. 2. Influence of pH and salts on stability and unfolding of rhodopsin.
    Vogel R; Siebert F
    Biochemistry; 2002 Mar; 41(11):3536-45. PubMed ID: 11888269
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Salt dependence of the formation and stability of the signaling state in G protein-coupled receptors: evidence for the involvement of the Hofmeister effect.
    Vogel R; Fan GB; Sheves M; Siebert F
    Biochemistry; 2001 Jan; 40(2):483-93. PubMed ID: 11148043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The all-trans-15-syn-retinal chromophore of metarhodopsin III is a partial agonist and not an inverse agonist.
    Mahalingam M; Vogel R
    Biochemistry; 2006 Dec; 45(51):15624-32. PubMed ID: 17176084
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of the metarhodopsin I/metarhodopsin II equilibrium of bovine rhodopsin by ionic strength--evidence for a surface-charge effect.
    Delange F; Merkx M; Bovee-Geurts PH; Pistorius AM; Degrip WJ
    Eur J Biochem; 1997 Jan; 243(1-2):174-80. PubMed ID: 9030737
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conformations of the active and inactive states of opsin.
    Vogel R; Siebert F
    J Biol Chem; 2001 Oct; 276(42):38487-93. PubMed ID: 11502747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional role of the "ionic lock"--an interhelical hydrogen-bond network in family A heptahelical receptors.
    Vogel R; Mahalingam M; Lüdeke S; Huber T; Siebert F; Sakmar TP
    J Mol Biol; 2008 Jul; 380(4):648-55. PubMed ID: 18554610
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Two protonation switches control rhodopsin activation in membranes.
    Mahalingam M; Martínez-Mayorga K; Brown MF; Vogel R
    Proc Natl Acad Sci U S A; 2008 Nov; 105(46):17795-800. PubMed ID: 18997017
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Salt effects on the conformational stability of the visual G-protein-coupled receptor rhodopsin.
    Reyes-Alcaraz A; Martínez-Archundia M; Ramon E; Garriga P
    Biophys J; 2011 Dec; 101(11):2798-806. PubMed ID: 22261069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Agonists and partial agonists of rhodopsin: retinals with ring modifications.
    Vogel R; Siebert F; Lüdeke S; Hirshfeld A; Sheves M
    Biochemistry; 2005 Sep; 44(35):11684-99. PubMed ID: 16128569
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulating rhodopsin receptor activation by altering the pKa of the retinal Schiff base.
    Vogel R; Siebert F; Yan EC; Sakmar TP; Hirshfeld A; Sheves M
    J Am Chem Soc; 2006 Aug; 128(32):10503-12. PubMed ID: 16895417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of Glu181 in the photoactivation of rhodopsin.
    Lüdeke S; Beck M; Yan EC; Sakmar TP; Siebert F; Vogel R
    J Mol Biol; 2005 Oct; 353(2):345-56. PubMed ID: 16169009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Precision vs flexibility in GPCR signaling.
    Elgeti M; Rose AS; Bartl FJ; Hildebrand PW; Hofmann KP; Heck M
    J Am Chem Soc; 2013 Aug; 135(33):12305-12. PubMed ID: 23883288
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling of protonation switches during rhodopsin activation.
    Vogel R; Sakmar TP; Sheves M; Siebert F
    Photochem Photobiol; 2007; 83(2):286-92. PubMed ID: 17576345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Time-resolved rapid-scan Fourier transform infrared difference spectroscopy on a noncyclic photosystem: rhodopsin photointermediates from Lumi to Meta II.
    Lüdeke S; Lórenz Fonfría VA; Siebert F; Vogel R
    Biopolymers; 2006 Oct; 83(2):159-69. PubMed ID: 16721790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of phosphorylation on receptor conformation: the metarhodopsin I in equilibrium with metarhodopsin II equilibrium in multiply phosphorylated rhodopsin.
    Mitchell DC; Kibelbek J; Litman BJ
    Biochemistry; 1992 Sep; 31(35):8107-11. PubMed ID: 1525152
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure-based biophysical analysis of the interaction of rhodopsin with G protein and arrestin.
    Sommer ME; Elgeti M; Hildebrand PW; Szczepek M; Hofmann KP; Scheerer P
    Methods Enzymol; 2015; 556():563-608. PubMed ID: 25857800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single-molecule observation of the ligand-induced population shift of rhodopsin, a G-protein-coupled receptor.
    Maeda R; Hiroshima M; Yamashita T; Wada A; Nishimura S; Sako Y; Shichida Y; Imamoto Y
    Biophys J; 2014 Feb; 106(4):915-24. PubMed ID: 24559994
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rhodopsin photoproducts in 2D crystals.
    Vogel R; Ruprecht J; Villa C; Mielke T; Schertler GF; Siebert F
    J Mol Biol; 2004 Apr; 338(3):597-609. PubMed ID: 15081816
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.