These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 11888278)

  • 21. The role of the retinylidene Schiff base counterion in rhodopsin in determining wavelength absorbance and Schiff base pKa.
    Sakmar TP; Franke RR; Khorana HG
    Proc Natl Acad Sci U S A; 1991 Apr; 88(8):3079-83. PubMed ID: 2014228
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Properties of early photolysis intermediates of rhodopsin are affected by glycine 121 and phenylalanine 261.
    Jäger S; Han M; Lewis JW; Szundi I; Sakmar TP; Kliger DS
    Biochemistry; 1997 Sep; 36(39):11804-10. PubMed ID: 9305971
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Characterization of the primary photointermediates of Drosophila rhodopsin.
    Vought BW; Salcedo E; Chadwell LV; Britt SG; Birge RR; Knox BE
    Biochemistry; 2000 Nov; 39(46):14128-37. PubMed ID: 11087361
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and function in rhodopsin: the fate of opsin formed upon the decay of light-activated metarhodopsin II in vitro.
    Sakamoto T; Khorana HG
    Proc Natl Acad Sci U S A; 1995 Jan; 92(1):249-53. PubMed ID: 7816826
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structure and function in rhodopsin: correct folding and misfolding in point mutants at and in proximity to the site of the retinitis pigmentosa mutation Leu-125-->Arg in the transmembrane helix C.
    Garriga P; Liu X; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4560-4. PubMed ID: 8643443
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Engineering a functional blue-wavelength-shifted rhodopsin mutant.
    Janz JM; Farrens DL
    Biochemistry; 2001 Jun; 40(24):7219-27. PubMed ID: 11401569
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bleaching kinetics of artificial visual pigments with modifications near the ring-polyene chain connection.
    Szundi I; de Lera AR; Pazos Y; Alvarez R; Oliana M; Sheves M; Lewis JW; Kliger DS
    Biochemistry; 2002 Feb; 41(6):2028-35. PubMed ID: 11827550
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.
    Devine EL; Theobald DL; Oprian DD
    Biochemistry; 2016 Aug; 55(34):4864-70. PubMed ID: 27486845
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Resonance Raman spectroscopy of octopus rhodopsin and its photoproducts.
    Pande C; Pande A; Yue KT; Callender R; Ebrey TG; Tsuda M
    Biochemistry; 1987 Aug; 26(16):4941-7. PubMed ID: 3663635
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Contribution of glutamic acid in the conserved E/DRY triad to the functional properties of rhodopsin.
    Sato K; Yamashita T; Shichida Y
    Biochemistry; 2014 Jul; 53(27):4420-5. PubMed ID: 24960425
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Molecular mechanisms of photoreception. IV. Photoregeneration of rhodopsin from metarhodopsin II using the artificial lipid membrane method for detection of intermediate steps of this reaction].
    Orlov NIa; Fesenko EE
    Mol Biol (Mosk); 1981; 15(6):1276-85. PubMed ID: 7322116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Structure and function in rhodopsin: replacement by alanine of cysteine residues 110 and 187, components of a conserved disulfide bond in rhodopsin, affects the light-activated metarhodopsin II state.
    Davidson FF; Loewen PC; Khorana HG
    Proc Natl Acad Sci U S A; 1994 Apr; 91(9):4029-33. PubMed ID: 8171030
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Photoregeneration of bovine rhodopsin from its signaling state.
    Arnis S; Hofmann KP
    Biochemistry; 1995 Jul; 34(29):9333-40. PubMed ID: 7626602
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Analogue pigment studies of chromophore-protein interactions in metarhodopsins.
    Renk G; Crouch RK
    Biochemistry; 1989 Jan; 28(2):907-12. PubMed ID: 2540811
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Photoreactions of metarhodopsin III.
    Vogel R; Lüdeke S; Radu I; Siebert F; Sheves M
    Biochemistry; 2004 Aug; 43(31):10255-64. PubMed ID: 15287753
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deprotonation of the Schiff base of rhodopsin is obligate in the activation of the G protein.
    Longstaff C; Calhoon RD; Rando RR
    Proc Natl Acad Sci U S A; 1986 Jun; 83(12):4209-13. PubMed ID: 3012559
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural impact of the E113Q counterion mutation on the activation and deactivation pathways of the G protein-coupled receptor rhodopsin.
    Standfuss J; Zaitseva E; Mahalingam M; Vogel R
    J Mol Biol; 2008 Jun; 380(1):145-57. PubMed ID: 18511075
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure and function in rhodopsin. Measurement of the rate of metarhodopsin II decay by fluorescence spectroscopy.
    Farrens DL; Khorana HG
    J Biol Chem; 1995 Mar; 270(10):5073-6. PubMed ID: 7890614
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Molecular mechanisms of rhodopsin retinitis pigmentosa and the efficacy of pharmacological rescue.
    Krebs MP; Holden DC; Joshi P; Clark CL; Lee AH; Kaushal S
    J Mol Biol; 2010 Feb; 395(5):1063-78. PubMed ID: 19913029
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.