These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 11888278)

  • 41. Regeneration of bovine and octopus opsins in situ with natural and artificial retinals.
    Koutalos Y; Ebrey TG; Tsuda M; Odashima K; Lien T; Park MH; Shimizu N; Derguini F; Nakanishi K; Gilson HR
    Biochemistry; 1989 Mar; 28(6):2732-9. PubMed ID: 2525050
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Alkylated hydroxylamine derivatives eliminate peripheral retinylidene Schiff bases but cannot enter the retinal binding pocket of light-activated rhodopsin.
    Piechnick R; Heck M; Sommer ME
    Biochemistry; 2011 Aug; 50(33):7168-76. PubMed ID: 21766795
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Conformational similarities in the beta-ionone ring region of the rhodopsin chromophore in its ground state and after photoactivation to the metarhodopsin-I intermediate.
    Spooner PJ; Sharples JM; Goodall SC; Seedorf H; Verhoeven MA; Lugtenburg J; Bovee-Geurts PH; DeGrip WJ; Watts A
    Biochemistry; 2003 Nov; 42(46):13371-8. PubMed ID: 14621981
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Spectroscopic evidence for altered chromophore--protein interactions in low-temperature photoproducts of the visual pigment responsible for congenital night blindness.
    Fahmy K; Zvyaga TA; Sakmar TP; Siebert F
    Biochemistry; 1996 Nov; 35(47):15065-73. PubMed ID: 8942673
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The molecular origin of the inhibition of transducin activation in rhodopsin lacking the 9-methyl group of the retinal chromophore: a UV-Vis and FTIR spectroscopic study.
    Vogel R; Fan GB; Sheves M; Siebert F
    Biochemistry; 2000 Aug; 39(30):8895-908. PubMed ID: 10913302
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Retinylidene ligand structure in bovine rhodopsin, metarhodopsin-I, and 10-methylrhodopsin from internuclear distance measurements using 13C-labeling and 1-D rotational resonance MAS NMR.
    Verdegem PJ; Bovee-Geurts PH; de Grip WJ; Lugtenburg J; de Groot HJ
    Biochemistry; 1999 Aug; 38(35):11316-24. PubMed ID: 10471281
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Rhodopsin in dimyristoylphosphatidylcholine-reconstituted bilayers forms metarhodopsin II and activates Gt.
    Mitchell DC; Kibelbek J; Litman BJ
    Biochemistry; 1991 Jan; 30(1):37-42. PubMed ID: 1899020
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Light-dependent transducin activation by an ultraviolet-absorbing rhodopsin mutant.
    Fahmy K; Sakmar TP
    Biochemistry; 1993 Sep; 32(35):9165-71. PubMed ID: 8396426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Chromophore structural changes in rhodopsin from nanoseconds to microseconds following pigment photolysis.
    Jäger S; Lewis JW; Zvyaga TA; Szundi I; Sakmar TP; Kliger DS
    Proc Natl Acad Sci U S A; 1997 Aug; 94(16):8557-62. PubMed ID: 9238015
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Normal and mutant rhodopsin activation measured with the early receptor current in a unicellular expression system.
    Shukla P; Sullivan JM
    J Gen Physiol; 1999 Nov; 114(5):609-36. PubMed ID: 10532961
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Biochemical aspects of the visual process. XL. Spectral and chemical analysis of metarhodopsin III in photoreceptor membrane suspensions.
    van Breugel PJ; Bovee-Geurts PH; Bonting SL; Daemen FJ
    Biochim Biophys Acta; 1979 Oct; 557(1):188-98. PubMed ID: 549636
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Functional characterization of the rod visual pigment of the echidna (Tachyglossus aculeatus), a basal mammal.
    Bickelmann C; Morrow JM; Müller J; Chang BS
    Vis Neurosci; 2012 Sep; 29(4-5):211-7. PubMed ID: 22874131
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Changing the location of the Schiff base counterion in rhodopsin.
    Zhukovsky EA; Robinson PR; Oprian DD
    Biochemistry; 1992 Oct; 31(42):10400-5. PubMed ID: 1329948
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin.
    Han M; Lin SW; Smith SO; Sakmar TP
    J Biol Chem; 1996 Dec; 271(50):32330-6. PubMed ID: 8943295
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Counterion displacement in the molecular evolution of the rhodopsin family.
    Terakita A; Koyanagi M; Tsukamoto H; Yamashita T; Miyata T; Shichida Y
    Nat Struct Mol Biol; 2004 Mar; 11(3):284-9. PubMed ID: 14981504
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Anions stabilize a metarhodopsin II-like photoproduct with a protonated Schiff base.
    Vogel R; Fan GB; Siebert F; Sheves M
    Biochemistry; 2001 Nov; 40(44):13342-52. PubMed ID: 11683644
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Effect of carboxyl mutations on functional properties of bovine rhodopsin.
    DeCaluwé GL; Bovee-Geurts PH; Rath P; Rothschild KJ; de Grip WJ
    Biophys Chem; 1995; 56(1-2):79-87. PubMed ID: 7662872
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Resonance raman spectroscopy of an ultraviolet-sensitive insect rhodopsin.
    Pande C; Deng H; Rath P; Callender RH; Schwemer J
    Biochemistry; 1987 Nov; 26(23):7426-30. PubMed ID: 3427084
    [TBL] [Abstract][Full Text] [Related]  

  • 59. FTIR study of the photoreaction of bovine rhodopsin in the presence of hydroxylamine.
    Katayama K; Furutani Y; Kandori H
    J Phys Chem B; 2010 Jul; 114(27):9039-46. PubMed ID: 20557105
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The identity of metarhodopsin III.
    Kolesnikov AV; Golobokova EY; Govardovskii VI
    Vis Neurosci; 2003; 20(3):249-65. PubMed ID: 14570247
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.