BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 11888646)

  • 21. Afferent sensitization and efferent cytotoxicity in allogeneic tissue responses of the marine sponge Callyspongia diffusa.
    Bigger CH; Hildemann WH; Jokiel PL; Johnston IS
    Transplantation; 1981 Jun; 31(6):461-4. PubMed ID: 7256828
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of alloimmune memory in a sponge.
    Bigger CH; Jokiel PL; Hildemann WH; Johnston IS
    J Immunol; 1982 Oct; 129(4):1570-2. PubMed ID: 7108217
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aggregation of marine sponge cells induced by Ca pulses, Ca ionophores, and phorbol esters proceeds in the absence of external Ca.
    Dunham P; Weissmann G
    Biochem Biophys Res Commun; 1986 Feb; 134(3):1319-26. PubMed ID: 3081000
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative and qualitative approach of glycan-glycan interactions in marine sponges.
    Popescu O; Checiu I; Gherghel P; Simon Z; Misevic GN
    Biochimie; 2003; 85(1-2):181-8. PubMed ID: 12765787
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cellular location of (2R, 3R, 7Z)-2-aminotetradec-7-ene-1, 3-diol, a potent antimicrobial metabolite produced by the Caribbean sponge Haliclona vansoesti.
    Richelle-Maurer E; Braekman JC; De Kluijver MJ; Gomez R; Van de Vyver G; Van Soest RW; Devijver C
    Cell Tissue Res; 2001 Oct; 306(1):157-65. PubMed ID: 11683177
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Involvement of a highly polyvalent glycan in the cell-binding of the aggregation factor from the marine sponge Microciona prolifera.
    Misevic GN; Burger MM
    J Cell Biochem; 1990 Aug; 43(4):307-14. PubMed ID: 2118911
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Towards an understanding of the molecular basis of immune responses in sponges: the marine demosponge Geodia cydonium as a model.
    Müller WE; Koziol C; Müller IM; Wiens M
    Microsc Res Tech; 1999 Feb; 44(4):219-36. PubMed ID: 10098924
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evolution of the innate and adaptive immune systems: relationships between potential immune molecules in the lowest metazoan phylum (Porifera) and those in vertebrates.
    Müller WE; Blumbach B; Müller IM
    Transplantation; 1999 Nov; 68(9):1215-27. PubMed ID: 10573054
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The stem cell concept in sponges (Porifera): Metazoan traits.
    Müller WE
    Semin Cell Dev Biol; 2006 Aug; 17(4):481-91. PubMed ID: 16807004
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Self and nonself recognition in a marine sponge, Halichondria japonica (Demospongiae).
    Saito Y
    Zoolog Sci; 2013 Aug; 30(8):651-7. PubMed ID: 23915158
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cellular aspects of allograft rejection in marine sponges of the genus Polymastia.
    Van de Vyver G; Barbieux B
    J Exp Zool; 1983 Jul; 227(1):1-7. PubMed ID: 6619759
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adhesion of a viral envelope protein to a non-self-binding domain of the aggregation factor in the marine sponge Microciona prolifera.
    MacKenzie R; Newman D; Burger MM; Roy R; Kuhns WJ
    Biol Bull; 2000 Oct; 199(2):209-11. PubMed ID: 11081741
    [No Abstract]   [Full Text] [Related]  

  • 33. Role of aggregation factor and cell type in sponge cell adhesion.
    Leith A
    Biol Bull; 1979 Apr; 156(2):212-23. PubMed ID: 454699
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Isolation and characterization of cell adhesion molecules from the marine sponge, Ophlitaspongia tenuis.
    Parish CR; Jakobsen KB; Coombe DR; Bacic A
    Biochim Biophys Acta; 1991 Jan; 1073(1):56-64. PubMed ID: 1991147
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Involvement of carbohydrates as multiple low affinity interaction sites in the self-association of the aggregation factor from the marine sponge Microciona prolifera.
    Misevic GN; Finne J; Burger MM
    J Biol Chem; 1987 Apr; 262(12):5870-7. PubMed ID: 3571239
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Phagocytic efficiency and cytotoxic responses of Indian freshwater sponge (Eunapius carteri) cells isolated by density gradient centrifugation and flow cytometry: a morphofunctional analysis.
    Mukherjee S; Ray M; Ray S
    Zoology (Jena); 2015 Feb; 118(1):8-18. PubMed ID: 25547566
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of tyrosine O-sulfate by cell proteoglycan from the marine sponge, Microciona prolifera.
    Popescu O; Interior R; Misevic G; Burger MM; Kuhns WJ
    Biol Bull; 1999 Oct; 197(2):279-81. PubMed ID: 10573851
    [No Abstract]   [Full Text] [Related]  

  • 38. Coordinator's report--section 2D3.
    Telen MJ
    Transfus Clin Biol; 1997; 4(1):137-8. PubMed ID: 9095520
    [No Abstract]   [Full Text] [Related]  

  • 39. Isolation of Ef silicatein and Ef lectin as molecular markers for sclerocytes and cells involved in innate immunity in the freshwater sponge Ephydatia fluviatilis.
    Funayama N; Nakatsukasa M; Kuraku S; Takechi K; Dohi M; Iwabe N; Miyata T; Agata K
    Zoolog Sci; 2005 Oct; 22(10):1113-22. PubMed ID: 16286723
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sulfated polysaccharides from marine sponges (Porifera): an ancestor cell-cell adhesion event based on the carbohydrate-carbohydrate interaction.
    Vilanova E; Coutinho CC; Mourão PA
    Glycobiology; 2009 Aug; 19(8):860-7. PubMed ID: 19395676
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.