BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 11888726)

  • 1. Flow system for fish freshness determination based on double multi-enzyme reactor electrodes.
    Okuma H; Watanabe E
    Biosens Bioelectron; 2002 May; 17(5):367-72. PubMed ID: 11888726
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a system with enzyme reactors for the determination of fish freshness.
    Carsol MA; Mascini M
    Talanta; 1998 Oct; 47(2):335-42. PubMed ID: 18967333
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a biosensor for assaying postmortem nucleotide degradation in fish tissues.
    Mulchandani A; Male KB; Luong JH
    Biotechnol Bioeng; 1990 Mar; 35(7):739-45. PubMed ID: 18592571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enzyme sensors for determination of fish freshness.
    Volpe G; Mascini M
    Talanta; 1996 Feb; 43(2):283-9. PubMed ID: 18966489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An amperometric biosensor for fish freshness detection from xanthine oxidase immobilized in polypyrrole-polyvinylsulphonate film.
    Dolmaci N; Çete S; Arslan F; Yaşar A
    Artif Cells Blood Substit Immobil Biotechnol; 2012 Aug; 40(4):275-9. PubMed ID: 22248304
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Amperometric detection of uric acid and hypoxanthine with Xanthine oxidase immobilized and carbon based screen-printed electrode. Application for fish freshness determination.
    Carsol MA; Volpe G; Mascini M
    Talanta; 1997 Nov; 44(11):2151-9. PubMed ID: 18966965
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of nucleotide and enzyme degradation in haddock (
    Karim NU; Kennedy JT; Linton M; Patterson M; Watson S; Gault N
    PeerJ; 2019; 7():e7527. PubMed ID: 31523503
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of an amperometric hypoxanthine biosensor for determination of hypoxanthine in fish and meat tissue.
    Basu AK; Chattopadhyay P; Choudhury UR; Chakraborty R
    Indian J Exp Biol; 2005 Jul; 43(7):646-53. PubMed ID: 16053273
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development of a FIA system with immobilized enzymes for specific post-column detection of purine bases and their nucleosides separated by HPLC column.
    Yao T; Matsumoto Y; Wasa T
    J Biotechnol; 1990 Apr; 14(1):89-97. PubMed ID: 1367430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast determination of adenosine 5'-triphosphate (ATP) and its catabolites in royal jelly using ultraperformance liquid chromatography.
    Zhou L; Xue X; Zhou J; Li Y; Zhao J; Wu L
    J Agric Food Chem; 2012 Sep; 60(36):8994-9. PubMed ID: 22924531
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and validation of a HILIC-UV method for the determination of nucleotides in fish samples.
    Logotheti M; Theochari K; Kostakis M; Pasias IN; Thomaidis NS
    Food Chem; 2018 May; 248():70-77. PubMed ID: 29329872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Development of quality evaluation sensor for fish freshness control based on KI value.
    Watanabe E; Tamada Y; Hamada-Sato N
    Biosens Bioelectron; 2005 Sep; 21(3):534-8. PubMed ID: 16076446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The role of microorganisms in the degradation of adenosine triphosphate (ATP) in chill-stored common carp (Cyprinus carpio) fillets.
    Li D; Zhang L; Song S; Wang Z; Kong C; Luo Y
    Food Chem; 2017 Jun; 224():347-352. PubMed ID: 28159278
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Determination of phosphate ions with an enzyme sensor system.
    Watanabe E; Endo H; Toyama K
    Biosensors; 1987-1988; 3(5):297-306. PubMed ID: 3149200
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A pattern-free paper enzyme biosensor for one-step detection of fish freshness indicator hypoxanthine with a microfluidic aggregation effect.
    Wang X; Wang Y; Guo C; Zhang X; Wang Y; Lv L; Wang X; Wei M
    Food Chem; 2023 Mar; 405(Pt A):134811. PubMed ID: 36370568
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of purine nucleosides and their bases by high-performance liquid chromatography using co-immobilized enzyme reactors.
    Kito M; Tawa R; Takeshima S; Hirose S
    J Chromatogr; 1990 Jun; 528(1):91-9. PubMed ID: 2117020
    [TBL] [Abstract][Full Text] [Related]  

  • 17. An FIA biosensor system for the determination of phosphate.
    Male KB; Luong JH
    Biosens Bioelectron; 1991; 6(7):581-7. PubMed ID: 1756001
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microdevice for on-site fish freshness checking based on K-value measurement.
    Itoh D; Koyachi E; Yokokawa M; Murata Y; Murata M; Suzuki H
    Anal Chem; 2013 Nov; 85(22):10962-8. PubMed ID: 24206370
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of different concentrations of metal ions on degradation of adenosine triphosphate in common carp (Cyprinus carpio) fillets stored at 4°C: An in vivo study.
    Li D; Qin N; Zhang L; Lv J; Li Q; Luo Y
    Food Chem; 2016 Nov; 211():812-8. PubMed ID: 27283700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improvement of fish freshness determination method by the application of amorphous freeze-dried enzymes.
    Srirangsan P; Hamada-Sato N; Kawai K; Watanabe M; Suzuki T
    J Agric Food Chem; 2010 Dec; 58(23):12456-61. PubMed ID: 21058644
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.