These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 11888733)

  • 1. Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium.
    Gil GC; Kim YJ; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):427-32. PubMed ID: 11888733
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium.
    Gil GC; Mitchell RJ; Chang ST; Gu MB
    Biosens Bioelectron; 2000 Mar; 15(1-2):23-30. PubMed ID: 10826640
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria.
    Choi SH; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):433-40. PubMed ID: 11888734
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment.
    Bae JW; Seo HB; Belkin S; Gu MB
    Anal Bioanal Chem; 2020 May; 412(14):3373-3381. PubMed ID: 32072206
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant.
    Gu MB; Chang ST
    Biosens Bioelectron; 2001 Dec; 16(9-12):667-74. PubMed ID: 11679243
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity.
    Gu MB; Gil GC
    Biosens Bioelectron; 2001 Dec; 16(9-12):661-6. PubMed ID: 11679242
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity.
    Jung I; Seo HB; Lee JE; Kim BC; Gu MB
    Analyst; 2014 Sep; 139(18):4696-701. PubMed ID: 25057512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical modeling of the dynamic response of a bioluminescent bacterial biosensor.
    Affi M; Solliec C; Legentilhomme P; Comiti J; Legrand J; Jouanneau S; Thouand G
    Anal Bioanal Chem; 2016 Dec; 408(30):8761-8770. PubMed ID: 27040532
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Online monitoring of water toxicity by use of bioluminescent reporter bacterial biochips.
    Elad T; Almog R; Yagur-Kroll S; Levkov K; Melamed S; Shacham-Diamand Y; Belkin S
    Environ Sci Technol; 2011 Oct; 45(19):8536-44. PubMed ID: 21875062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay.
    Kim BC; Park KS; Kim SD; Gu MB
    Biosens Bioelectron; 2003 May; 18(5-6):821-6. PubMed ID: 12706597
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Smartphone-Based Whole-Cell Biosensor Platform Utilizing an Immobilization Approach on a Filter Membrane Disk for the Monitoring of Water Toxicants.
    Ma J; Harpaz D; Liu Y; Eltzov E
    Sensors (Basel); 2020 Sep; 20(19):. PubMed ID: 32992697
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor.
    Charrier T; Chapeau C; Bendria L; Picart P; Daniel P; Thouand G
    Anal Bioanal Chem; 2011 May; 400(4):1061-70. PubMed ID: 21061000
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preparation and Assay of Simple Light off Biosensor Based on Immobilized Bioluminescent Bacteria for General Toxicity Assays.
    Gabriel GV; Viviani VR
    Methods Mol Biol; 2016; 1461():217-23. PubMed ID: 27424908
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria.
    Lee HJ; Villaume J; Cullen DC; Kim BC; Gu MB
    Biosens Bioelectron; 2003 May; 18(5-6):571-7. PubMed ID: 12706564
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A cell array biosensor for environmental toxicity analysis.
    Lee JH; Mitchell RJ; Kim BC; Cullen DC; Gu MB
    Biosens Bioelectron; 2005 Sep; 21(3):500-7. PubMed ID: 16076440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fiber optic monooxygenase biosensor for toluene concentration measurement in aqueous samples.
    Zhong Z; Fritzsche M; Pieper SB; Wood TK; Lear KL; Dandy DS; Reardon KF
    Biosens Bioelectron; 2011 Jan; 26(5):2407-12. PubMed ID: 21081273
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using a cell-based gas biosensor for investigation of adverse effects of acetone vapors in vitro.
    Bohrn U; Stütz E; Fleischer M; Schöning MJ; Wagner P
    Biosens Bioelectron; 2013 Feb; 40(1):393-400. PubMed ID: 22940196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optical biosensor for environmental on-line monitoring of naphthalene and salicylate bioavailability with an immobilized bioluminescent catabolic reporter bacterium.
    Heitzer A; Malachowsky K; Thonnard JE; Bienkowski PR; White DC; Sayler GS
    Appl Environ Microbiol; 1994 May; 60(5):1487-94. PubMed ID: 8017932
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A rapid and simple evaluation system for gas toxicity using luminous bacteria entrapped by a polyion complex membrane.
    Komori K; Miyajima S; Tsuru T; Fujii T; Mohri S; Ono Y; Sakai Y
    Chemosphere; 2009 Nov; 77(8):1106-12. PubMed ID: 19716582
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A bioluminescent sensor for high throughput toxicity classification.
    Kim BC; Gu MB
    Biosens Bioelectron; 2003 Aug; 18(8):1015-21. PubMed ID: 12782464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.