These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 11888734)

  • 1. A portable toxicity biosensor using freeze-dried recombinant bioluminescent bacteria.
    Choi SH; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):433-40. PubMed ID: 11888734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A multi-channel continuous toxicity monitoring system using recombinant bioluminescent bacteria for classification of toxicity.
    Gu MB; Gil GC
    Biosens Bioelectron; 2001 Dec; 16(9-12):661-6. PubMed ID: 11679242
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A bioluminescent sensor for high throughput toxicity classification.
    Kim BC; Gu MB
    Biosens Bioelectron; 2003 Aug; 18(8):1015-21. PubMed ID: 12782464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity monitoring and classification of endocrine disrupting chemicals (EDCs) using recombinant bioluminescent bacteria.
    Gu MB; Min J; Kim EJ
    Chemosphere; 2002 Jan; 46(2):289-94. PubMed ID: 11827287
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Some observations in freeze-drying of recombinant bioluminescent Escherichia coli for toxicity monitoring.
    Gu MB; Choi SH; Kim SW
    J Biotechnol; 2001 Jun; 88(2):95-105. PubMed ID: 11403844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing the sensitivity of a two-stage continuous toxicity monitoring system through the manipulation of the dilution rate.
    Gu MB; Gil GC; Kim JH
    J Biotechnol; 2002 Feb; 93(3):283-8. PubMed ID: 11755991
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of a high throughput toxicity biosensor and comparison with a Daphnia magna bioassay.
    Kim BC; Park KS; Kim SD; Gu MB
    Biosens Bioelectron; 2003 May; 18(5-6):821-6. PubMed ID: 12706597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multi-channel continuous water toxicity monitoring system: its evaluation and application to water discharged from a power plant.
    Kim BC; Gu MB
    Environ Monit Assess; 2005 Oct; 109(1-3):123-33. PubMed ID: 16240193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement in the sensitivity of a gas biosensor by using an advanced immobilization of a recombinant bioluminescent bacterium.
    Gil GC; Kim YJ; Gu MB
    Biosens Bioelectron; 2002 May; 17(5):427-32. PubMed ID: 11888733
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A dip-stick type biosensor using bioluminescent bacteria encapsulated in color-coded alginate microbeads for detection of water toxicity.
    Jung I; Seo HB; Lee JE; Kim BC; Gu MB
    Analyst; 2014 Sep; 139(18):4696-701. PubMed ID: 25057512
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of radiation effects using recombinant bioluminescent Escherichia coli strains.
    Min J; Lee CW; Moon SH; LaRossa RA; Gu MB
    Radiat Environ Biophys; 2000 Mar; 39(1):41-5. PubMed ID: 10789894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An optical detection module-based biosensor using fortified bacterial beads for soil toxicity assessment.
    Bae JW; Seo HB; Belkin S; Gu MB
    Anal Bioanal Chem; 2020 May; 412(14):3373-3381. PubMed ID: 32072206
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimal conditions for stability of photoemission and freeze drying of two luminescent bacteria for use in a biosensor.
    Camanzi L; Bolelli L; Maiolini E; Girotti S; Matteuzzi D
    Environ Toxicol Chem; 2011 Apr; 30(4):801-5. PubMed ID: 21191881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An integrated mini biosensor system for continuous water toxicity monitoring.
    Lee JH; Gu MB
    Biosens Bioelectron; 2005 Mar; 20(9):1744-9. PubMed ID: 15681189
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A multi-channel bioluminescent bacterial biosensor for the on-line detection of metals and toxicity. Part II: technical development and proof of concept of the biosensor.
    Charrier T; Chapeau C; Bendria L; Picart P; Daniel P; Thouand G
    Anal Bioanal Chem; 2011 May; 400(4):1061-70. PubMed ID: 21061000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change.
    Shin HJ; Park HH; Lim WK
    J Biotechnol; 2005 Sep; 119(1):36-43. PubMed ID: 16051389
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monitoring and classification of PAH toxicity using an immobilized bioluminescent bacteria.
    Lee HJ; Villaume J; Cullen DC; Kim BC; Gu MB
    Biosens Bioelectron; 2003 May; 18(5-6):571-7. PubMed ID: 12706564
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soil biosensor for the detection of PAH toxicity using an immobilized recombinant bacterium and a biosurfactant.
    Gu MB; Chang ST
    Biosens Bioelectron; 2001 Dec; 16(9-12):667-74. PubMed ID: 11679243
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A biosensor for the detection of gas toxicity using a recombinant bioluminescent bacterium.
    Gil GC; Mitchell RJ; Chang ST; Gu MB
    Biosens Bioelectron; 2000 Mar; 15(1-2):23-30. PubMed ID: 10826640
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhancement of the multi-channel continuous monitoring system through the use of Xenorhabdus luminescens lux fusions.
    Lee JH; Mitchell RJ; Gu MB
    Biosens Bioelectron; 2004 Oct; 20(3):475-81. PubMed ID: 15494228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.