BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 11888936)

  • 41. Mechanistic insight into ALK receptor tyrosine kinase in human cancer biology.
    Hallberg B; Palmer RH
    Nat Rev Cancer; 2013 Oct; 13(10):685-700. PubMed ID: 24060861
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Analysis of conformational determinants underlying HSP90-kinase interaction.
    Kancha RK; Bartosch N; Duyster J
    PLoS One; 2013; 8(7):e68394. PubMed ID: 23844194
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Molecular and functional characterizations of the association and interactions between nucleophosmin-anaplastic lymphoma kinase and type I insulin-like growth factor receptor.
    Shi B; Vishwamitra D; Granda JG; Whitton T; Shi P; Amin HM
    Neoplasia; 2013 Jun; 15(6):669-83. PubMed ID: 23730215
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The pathobiology of the oncogenic tyrosine kinase NPM-ALK: a brief update.
    Lai R; Ingham RJ
    Ther Adv Hematol; 2013 Apr; 4(2):119-31. PubMed ID: 23610619
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Targeting ALK: a promising strategy for the treatment of non-small cell lung cancer, non-Hodgkin's lymphoma, and neuroblastoma.
    Morales La Madrid A; Campbell N; Smith S; Cohn SL; Salgia R
    Target Oncol; 2012 Sep; 7(3):199-210. PubMed ID: 22968692
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Pediatric T- and NK-cell lymphomas: new biologic insights and treatment strategies.
    El-Mallawany NK; Frazer JK; Van Vlierberghe P; Ferrando AA; Perkins S; Lim M; Chu Y; Cairo MS
    Blood Cancer J; 2012 Apr; 2(4):e65. PubMed ID: 22829967
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Heat shock protein 90 inhibition: rationale and clinical potential.
    Den RB; Lu B
    Ther Adv Med Oncol; 2012 Jul; 4(4):211-8. PubMed ID: 22754594
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The heat shock protein-90 co-chaperone, Cyclophilin 40, promotes ALK-positive, anaplastic large cell lymphoma viability and its expression is regulated by the NPM-ALK oncoprotein.
    Pearson JD; Mohammed Z; Bacani JT; Lai R; Ingham RJ
    BMC Cancer; 2012 Jun; 12():229. PubMed ID: 22681779
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Treating ALK-positive lung cancer--early successes and future challenges.
    Camidge DR; Doebele RC
    Nat Rev Clin Oncol; 2012 Apr; 9(5):268-77. PubMed ID: 22473102
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Emerging importance of ALK in neuroblastoma.
    Azarova AM; Gautam G; George RE
    Semin Cancer Biol; 2011 Oct; 21(4):267-75. PubMed ID: 21945349
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Tyrosine kinase gene fusions in cancer: translating mechanisms into targeted therapies.
    Medves S; Demoulin JB
    J Cell Mol Med; 2012 Feb; 16(2):237-48. PubMed ID: 21854543
    [TBL] [Abstract][Full Text] [Related]  

  • 52. The nucleophosmin-anaplastic lymphoma kinase oncogene interacts, activates, and uses the kinase PIKfyve to increase invasiveness.
    Dupuis-Coronas S; Lagarrigue F; Ramel D; Chicanne G; Saland E; Gaits-Iacovoni F; Payrastre B; Tronchère H
    J Biol Chem; 2011 Sep; 286(37):32105-14. PubMed ID: 21737449
    [TBL] [Abstract][Full Text] [Related]  

  • 53. BCL6 repression of EP300 in human diffuse large B cell lymphoma cells provides a basis for rational combinatorial therapy.
    Cerchietti LC; Hatzi K; Caldas-Lopes E; Yang SN; Figueroa ME; Morin RD; Hirst M; Mendez L; Shaknovich R; Cole PA; Bhalla K; Gascoyne RD; Marra M; Chiosis G; Melnick A
    J Clin Invest; 2010 Dec; 120(12):4569-82. PubMed ID: 21041953
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene.
    Chen Z; Sasaki T; Tan X; Carretero J; Shimamura T; Li D; Xu C; Wang Y; Adelmant GO; Capelletti M; Lee HJ; Rodig SJ; Borgman C; Park SI; Kim HR; Padera R; Marto JA; Gray NS; Kung AL; Shapiro GI; Jänne PA; Wong KK
    Cancer Res; 2010 Dec; 70(23):9827-36. PubMed ID: 20952506
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Activity of IPI-504, a novel heat-shock protein 90 inhibitor, in patients with molecularly defined non-small-cell lung cancer.
    Sequist LV; Gettinger S; Senzer NN; Martins RG; Jänne PA; Lilenbaum R; Gray JE; Iafrate AJ; Katayama R; Hafeez N; Sweeney J; Walker JR; Fritz C; Ross RW; Grayzel D; Engelman JA; Borger DR; Paez G; Natale R
    J Clin Oncol; 2010 Nov; 28(33):4953-60. PubMed ID: 20940188
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Macrocyclic inhibitors of hsp90.
    Johnson VA; Singh EK; Nazarova LA; Alexander LD; McAlpine SR
    Curr Top Med Chem; 2010; 10(14):1380-402. PubMed ID: 20536417
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The tyrosine 343 residue of nucleophosmin (NPM)-anaplastic lymphoma kinase (ALK) is important for its interaction with SHP1, a cytoplasmic tyrosine phosphatase with tumor suppressor functions.
    Hegazy SA; Wang P; Anand M; Ingham RJ; Gelebart P; Lai R
    J Biol Chem; 2010 Jun; 285(26):19813-20. PubMed ID: 20424160
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Heat shock proteins as targets in oncology.
    Giménez Ortiz A; Montalar Salcedo J
    Clin Transl Oncol; 2010 Mar; 12(3):166-73. PubMed ID: 20231121
    [TBL] [Abstract][Full Text] [Related]  

  • 59. A purine scaffold Hsp90 inhibitor destabilizes BCL-6 and has specific antitumor activity in BCL-6-dependent B cell lymphomas.
    Cerchietti LC; Lopes EC; Yang SN; Hatzi K; Bunting KL; Tsikitas LA; Mallik A; Robles AI; Walling J; Varticovski L; Shaknovich R; Bhalla KN; Chiosis G; Melnick A
    Nat Med; 2009 Dec; 15(12):1369-76. PubMed ID: 19966776
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Anaplastic lymphoma kinase: signalling in development and disease.
    Palmer RH; Vernersson E; Grabbe C; Hallberg B
    Biochem J; 2009 May; 420(3):345-61. PubMed ID: 19459784
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.