These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 11889135)
1. GSTB1-1 from Proteus mirabilis: a snapshot of an enzyme in the evolutionary pathway from a redox enzyme to a conjugating enzyme. Caccuri AM; Antonini G; Allocati N; Di Ilio C; De Maria F; Innocenti F; Parker MW; Masulli M; Lo Bello M; Turella P; Federici G; Ricci G J Biol Chem; 2002 May; 277(21):18777-84. PubMed ID: 11889135 [TBL] [Abstract][Full Text] [Related]
2. Properties and utility of the peculiar mixed disulfide in the bacterial glutathione transferase B1-1. Caccuri AM; Antonini G; Allocati N; Di Ilio C; Innocenti F; De Maria F; Parker MW; Masulli M; Polizio F; Federici G; Ricci G Biochemistry; 2002 Apr; 41(14):4686-93. PubMed ID: 11926831 [TBL] [Abstract][Full Text] [Related]
3. Purification and characterization of a heterodimeric 23/20-kDa proteolytic fragment of bacterial glutathione transferase B1-1. Aceto A; Dragani B; Allocati N; Masulli M; Petruzzelli R; Di Ilio C Arch Biochem Biophys; 1996 Apr; 328(2):302-8. PubMed ID: 8645008 [TBL] [Abstract][Full Text] [Related]
4. A mixed disulfide bond in bacterial glutathione transferase: functional and evolutionary implications. Rossjohn J; Polekhina G; Feil SC; Allocati N; Masulli M; Di Illio C; Parker MW Structure; 1998 Jun; 6(6):721-34. PubMed ID: 9655824 [TBL] [Abstract][Full Text] [Related]
5. Redox potentials of glutaredoxins and other thiol-disulfide oxidoreductases of the thioredoxin superfamily determined by direct protein-protein redox equilibria. Aslund F; Berndt KD; Holmgren A J Biol Chem; 1997 Dec; 272(49):30780-6. PubMed ID: 9388218 [TBL] [Abstract][Full Text] [Related]
6. Rat glutathione S-transferase M4-4: an isoenzyme with unique structural features including a redox-reactive cysteine-115 residue that forms mixed disulphides with glutathione. Cheng H; Tchaikovskaya T; Tu YS; Chapman J; Qian B; Ching WM; Tien M; Rowe JD; Patskovsky YV; Listowsky I; Tu CP Biochem J; 2001 Jun; 356(Pt 2):403-14. PubMed ID: 11368767 [TBL] [Abstract][Full Text] [Related]
7. Human glutathione transferase T2-2 discloses some evolutionary strategies for optimization of substrate binding to the active site of glutathione transferases. Caccuri AM; Antonini G; Board PG; Flanagan J; Parker MW; Paolesse R; Turella P; Federici G; Lo Bello M; Ricci G J Biol Chem; 2001 Feb; 276(8):5427-31. PubMed ID: 11044442 [TBL] [Abstract][Full Text] [Related]
8. Insights into deglutathionylation reactions. Different intermediates in the glutaredoxin and protein disulfide isomerase catalyzed reactions are defined by the gamma-linkage present in glutathione. Peltoniemi MJ; Karala AR; Jurvansuu JK; Kinnula VL; Ruddock LW J Biol Chem; 2006 Nov; 281(44):33107-14. PubMed ID: 16956877 [TBL] [Abstract][Full Text] [Related]
9. Characterization of an omega-class glutathione S-transferase from Schistosoma mansoni with glutaredoxin-like dehydroascorbate reductase and thiol transferase activities. Girardini J; Amirante A; Zemzoumi K; Serra E Eur J Biochem; 2002 Nov; 269(22):5512-21. PubMed ID: 12423349 [TBL] [Abstract][Full Text] [Related]
11. Site-directed mutagenesis of the Proteus mirabilis glutathione transferase B1-1 G-site. Casalone E; Allocati N; Ceccarelli I; Masulli M; Rossjohn J; Parker MW; Di Ilio C FEBS Lett; 1998 Feb; 423(2):122-4. PubMed ID: 9512342 [TBL] [Abstract][Full Text] [Related]
12. Molecular cloning and overexpression of a glutathione transferase gene from Proteus mirabilis. Perito B; Allocati N; Casalone E; Masulli M; Dragani B; Polsinelli M; Aceto A; Di Ilio C Biochem J; 1996 Aug; 318 ( Pt 1)(Pt 1):157-62. PubMed ID: 8761466 [TBL] [Abstract][Full Text] [Related]
13. Saccharomyces cerevisiae cells have three Omega class glutathione S-transferases acting as 1-Cys thiol transferases. Garcerá A; Barreto L; Piedrafita L; Tamarit J; Herrero E Biochem J; 2006 Sep; 398(2):187-96. PubMed ID: 16709151 [TBL] [Abstract][Full Text] [Related]
14. A functionally conserved basic residue in glutathione transferases interacts with the glycine moiety of glutathione and is pivotal for enzyme catalysis. Vararattanavech A; Ketterman AJ Biochem J; 2007 Sep; 406(2):247-56. PubMed ID: 17523921 [TBL] [Abstract][Full Text] [Related]
15. Human glutathione transferase T2-2 discloses some evolutionary strategies for optimization of the catalytic activity of glutathione transferases. Caccuri AM; Antonini G; Board PG; Flanagan J; Parker MW; Paolesse R; Turella P; Chelvanayagam G; Ricci G J Biol Chem; 2001 Feb; 276(8):5432-7. PubMed ID: 11044441 [TBL] [Abstract][Full Text] [Related]
16. Analysis by limited proteolysis of domain organization and GSH-site arrangement of bacterial glutathione transferase B1-1. Aceto A; Dragani B; Allocati N; Angelucci S; Bucciarelli T; Sacchetta P; Di Ilio C; Martini F Int J Biochem Cell Biol; 1995 Oct; 27(10):1033-41. PubMed ID: 7496993 [TBL] [Abstract][Full Text] [Related]
17. Multiphasic denaturation of glutathione transferase B1-1 by guanidinium chloride. Role of the dimeric structure on the flexibility of the active site. Sacchetta P; Aceto A; Bucciarelli T; Dragani B; Santarone S; Allocati N; Di Ilio C Eur J Biochem; 1993 Aug; 215(3):741-5. PubMed ID: 8354281 [TBL] [Abstract][Full Text] [Related]
18. Characterization of the hydrophobic substrate-binding site of the bacterial beta class glutathione transferase from Proteus mirabilis. Federici L; Masulli M; Di Ilio C; Allocati N Protein Eng Des Sel; 2010 Sep; 23(9):743-50. PubMed ID: 20663851 [TBL] [Abstract][Full Text] [Related]
19. Catalytic mechanism and role of hydroxyl residues in the active site of theta class glutathione S-transferases. Investigation of Ser-9 and Tyr-113 in a glutathione S-transferase from the Australian sheep blowfly, Lucilia cuprina. Caccuri AM; Antonini G; Nicotra M; Battistoni A; Lo Bello M; Board PG; Parker MW; Ricci G J Biol Chem; 1997 Nov; 272(47):29681-6. PubMed ID: 9368035 [TBL] [Abstract][Full Text] [Related]