BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 11889483)

  • 1. Purification and characterization of the methylene tetrahydromethanopterin dehydrogenase MtdB and the methylene tetrahydrofolate dehydrogenase FolD from Hyphomicrobium zavarzinii ZV580.
    Goenrich M; Bursy J; Hübner E; Linder D; Schwartz AC; Vorholt JA
    Arch Microbiol; 2002 Apr; 177(4):299-303. PubMed ID: 11889483
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of a second methylene tetrahydromethanopterin dehydrogenase from Methylobacterium extorquens AM1.
    Hagemeier CH; Chistoserdova L; Lidstrom ME; Thauer RK; Vorholt JA
    Eur J Biochem; 2000 Jun; 267(12):3762-9. PubMed ID: 10848995
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of methylene-tetrahydromethanopterin dehydrogenase from methylobacterium extorquens AM1.
    Ermler U; Hagemeier CH; Roth A; Demmer U; Grabarse W; Warkentin E; Vorholt JA
    Structure; 2002 Aug; 10(8):1127-37. PubMed ID: 12176390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The NADP-dependent methylene tetrahydromethanopterin dehydrogenase in Methylobacterium extorquens AM1.
    Vorholt JA; Chistoserdova L; Lidstrom ME; Thauer RK
    J Bacteriol; 1998 Oct; 180(20):5351-6. PubMed ID: 9765566
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Elucidation of the role of the methylene-tetrahydromethanopterin dehydrogenase MtdA in the tetrahydromethanopterin-dependent oxidation pathway in Methylobacterium extorquens AM1.
    Martinez-Gomez NC; Nguyen S; Lidstrom ME
    J Bacteriol; 2013 May; 195(10):2359-67. PubMed ID: 23504017
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MtdC, a novel class of methylene tetrahydromethanopterin dehydrogenases.
    Vorholt JA; Kalyuzhnaya MG; Hagemeier CH; Lidstrom ME; Chistoserdova L
    J Bacteriol; 2005 Sep; 187(17):6069-74. PubMed ID: 16109948
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strategy for the isolation of native dehydrogenases with potential for biosensor development from the organism Hyphomicrobium zavarzinii ZV580.
    Hilbrig F; Jérôme V; Salzig M; Freitag R
    J Chromatogr A; 2009 Apr; 1216(16):3518-25. PubMed ID: 18835606
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A methenyl tetrahydromethanopterin cyclohydrolase and a methenyl tetrahydrofolate cyclohydrolase in Methylobacterium extorquens AM1.
    Pomper BK; Vorholt JA; Chistoserdova L; Lidstrom ME; Thauer RK
    Eur J Biochem; 1999 Apr; 261(2):475-80. PubMed ID: 10215859
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Distribution of tetrahydromethanopterin-dependent enzymes in methylotrophic bacteria and phylogeny of methenyl tetrahydromethanopterin cyclohydrolases.
    Vorholt JA; Chistoserdova L; Stolyar SM; Thauer RK; Lidstrom ME
    J Bacteriol; 1999 Sep; 181(18):5750-7. PubMed ID: 10482517
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Structural basis of the hydride transfer mechanism in F(420)-dependent methylenetetrahydromethanopterin dehydrogenase.
    Ceh K; Demmer U; Warkentin E; Moll J; Thauer RK; Shima S; Ermler U
    Biochemistry; 2009 Oct; 48(42):10098-105. PubMed ID: 19761261
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Hydride Transfer Process in NADP-dependent Methylene-tetrahydromethanopterin Dehydrogenase.
    Huang G; Wagner T; Demmer U; Warkentin E; Ermler U; Shima S
    J Mol Biol; 2020 Mar; 432(7):2042-2054. PubMed ID: 32061937
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relations and functions of dye-linked formaldehyde dehydrogenase from Hyphomicrobium zavarzinii revealed by sequence determination and analysis.
    Schwartz AC; Gockel G; Gross J; Moritz B; Meyer HE
    Arch Microbiol; 2004 Dec; 182(6):458-66. PubMed ID: 15480576
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Methenyltetrahydrofolate cyclohydrolase is rate limiting for the enzymatic conversion of 10-formyltetrahydrofolate to 5,10-methylenetetrahydrofolate in bifunctional dehydrogenase-cyclohydrolase enzymes.
    Pawelek PD; MacKenzie RE
    Biochemistry; 1998 Jan; 37(4):1109-15. PubMed ID: 9454603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of an insertional expression vector system for Methylobacterium extorquens AM1 and generation of null mutants lacking mtdA and/or fch.
    Marx CJ; Lidstrom ME
    Microbiology (Reading); 2004 Jan; 150(Pt 1):9-19. PubMed ID: 14702393
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of a fed-batch process for the production of a dye-linked formaldehyde dehydrogenase in Hyphomicrobium zavarzinii ZV 580.
    Jérôme V; Hermann M; Hilbrig F; Freitag R
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):779-88. PubMed ID: 17938908
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formaldehyde dehydrogenase preparations from Methylococcus capsulatus (Bath) comprise methanol dehydrogenase and methylene tetrahydromethanopterin dehydrogenase.
    Adeosun EK; Smith TJ; Hoberg AM; Velarde G; Ford R; Dalton H
    Microbiology (Reading); 2004 Mar; 150(Pt 3):707-713. PubMed ID: 14993320
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chloromethane utilization gene cluster from Hyphomicrobium chloromethanicum strain CM2(T) and development of functional gene probes to detect halomethane-degrading bacteria.
    McAnulla C; Woodall CA; McDonald IR; Studer A; Vuilleumier S; Leisinger T; Murrell JC
    Appl Environ Microbiol; 2001 Jan; 67(1):307-16. PubMed ID: 11133460
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1.
    Marx CJ; Chistoserdova L; Lidstrom ME
    J Bacteriol; 2003 Dec; 185(24):7160-8. PubMed ID: 14645276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Crystal structures of the carboxyl terminal domain of rat 10-formyltetrahydrofolate dehydrogenase: implications for the catalytic mechanism of aldehyde dehydrogenases.
    Tsybovsky Y; Donato H; Krupenko NI; Davies C; Krupenko SA
    Biochemistry; 2007 Mar; 46(11):2917-29. PubMed ID: 17302434
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Purification and characterization of a dehydrogenase catalyzing conversion of N alpha-benzyloxycarbonyl-L-aminoadipic-delta-semialdehyde to N alpha-benzyloxycarbonyl-L-aminoadipic acid from rhodococcus sp. AIU Z-35-1.
    Isobe K; Fukuda N; Nagasawa S
    J Biosci Bioeng; 2007 Nov; 104(5):398-402. PubMed ID: 18086440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.