These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 11889571)

  • 1. Point mutations in the pore region directly or indirectly affect glibenclamide block of the CFTR chloride channel.
    Gupta J; Linsdell P
    Pflugers Arch; 2002 Mar; 443(5-6):739-47. PubMed ID: 11889571
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
    Linsdell P
    Exp Physiol; 2006 Jan; 91(1):123-9. PubMed ID: 16157656
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence that extracellular anions interact with a site outside the CFTR chloride channel pore to modify channel properties.
    Zhou JJ; Linsdell P
    Can J Physiol Pharmacol; 2009 May; 87(5):387-95. PubMed ID: 19448737
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maximization of the rate of chloride conduction in the CFTR channel pore by ion-ion interactions.
    Gong X; Linsdell P
    Arch Biochem Biophys; 2004 Jun; 426(1):78-82. PubMed ID: 15130785
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extent of the selectivity filter conferred by the sixth transmembrane region in the CFTR chloride channel pore.
    Gupta J; Lindsell P
    Mol Membr Biol; 2003; 20(1):45-52. PubMed ID: 12745925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of direct bicarbonate transport by the CFTR anion channel.
    Tang L; Fatehi M; Linsdell P
    J Cyst Fibros; 2009 Mar; 8(2):115-21. PubMed ID: 19019741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct block of the cystic fibrosis transmembrane conductance regulator Cl(-) channel by niflumic acid.
    Scott-Ward TS; Li H; Schmidt A; Cai Z; Sheppard DN
    Mol Membr Biol; 2004; 21(1):27-38. PubMed ID: 14668136
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular mechanism of arachidonic acid inhibition of the CFTR chloride channel.
    Zhou JJ; Linsdell P
    Eur J Pharmacol; 2007 Jun; 563(1-3):88-91. PubMed ID: 17397825
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of heterologously expressed cystic fibrosis transmembrane conductance regulator Cl- channels by non-sulphonylurea hypoglycaemic agents.
    Cai Z; Lansdell KA; Sheppard DN
    Br J Pharmacol; 1999 Sep; 128(1):108-18. PubMed ID: 10498841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of a second blocker binding site at the cytoplasmic mouth of the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    St Aubin CN; Zhou JJ; Linsdell P
    Mol Pharmacol; 2007 May; 71(5):1360-8. PubMed ID: 17293558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line.
    Sheppard DN; Robinson KA
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Positive charges at the intracellular mouth of the pore regulate anion conduction in the CFTR chloride channel.
    Aubin CN; Linsdell P
    J Gen Physiol; 2006 Nov; 128(5):535-45. PubMed ID: 17043152
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular determinants of Au(CN)(2)(-) binding and permeability within the cystic fibrosis transmembrane conductance regulator Cl(-) channel pore.
    Gong X; Burbridge SM; Cowley EA; Linsdell P
    J Physiol; 2002 Apr; 540(Pt 1):39-47. PubMed ID: 11927667
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Strategies to investigate the mechanism of action of CFTR modulators.
    Cai Z; Scott-Ward TS; Li H; Schmidt A; Sheppard DN
    J Cyst Fibros; 2004 Aug; 3 Suppl 2():141-7. PubMed ID: 15463947
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhibition of cystic fibrosis transmembrane conductance regulator chloride channel currents by arachidonic acid.
    Linsdell P
    Can J Physiol Pharmacol; 2000 Jun; 78(6):490-9. PubMed ID: 10914639
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interactions between impermeant blocking ions in the cystic fibrosis transmembrane conductance regulator chloride channel pore: evidence for anion-induced conformational changes.
    Ge N; Linsdell P
    J Membr Biol; 2006 Mar; 210(1):31-42. PubMed ID: 16794779
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interrelationship between the Na+/glucose cotransporter and CFTR in Caco-2 cells: relevance to cystic fibrosis.
    Mailleau C; Capeau J; Brahimi-Horn MC
    J Cell Physiol; 1998 Sep; 176(3):472-81. PubMed ID: 9699500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing an open CFTR pore with organic anion blockers.
    Zhou Z; Hu S; Hwang TC
    J Gen Physiol; 2002 Nov; 120(5):647-62. PubMed ID: 12407077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells.
    Kim JA; Kang YS; Lee SH; Lee EH; Yoo BH; Lee YS
    Biochem Biophys Res Commun; 1999 Aug; 261(3):682-8. PubMed ID: 10441486
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mutation-induced blocker permeability and multiion block of the CFTR chloride channel pore.
    Gong X; Linsdell P
    J Gen Physiol; 2003 Dec; 122(6):673-87. PubMed ID: 14610019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.