These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

428 related articles for article (PubMed ID: 11890553)

  • 1. The ARTT motif and a unified structural understanding of substrate recognition in ADP-ribosylating bacterial toxins and eukaryotic ADP-ribosyltransferases.
    Han S; Tainer JA
    Int J Med Microbiol; 2002 Feb; 291(6-7):523-9. PubMed ID: 11890553
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crystal structure and novel recognition motif of rho ADP-ribosylating C3 exoenzyme from Clostridium botulinum: structural insights for recognition specificity and catalysis.
    Han S; Arvai AS; Clancy SB; Tainer JA
    J Mol Biol; 2001 Jan; 305(1):95-107. PubMed ID: 11114250
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Three conserved consensus sequences identify the NAD-binding site of ADP-ribosylating enzymes, expressed by eukaryotes, bacteria and T-even bacteriophages.
    Domenighini M; Rappuoli R
    Mol Microbiol; 1996 Aug; 21(4):667-74. PubMed ID: 8878030
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conserved structural motif for recognizing nicotinamide adenine dinucleotide in poly(ADP-ribose) polymerases and ADP-ribosylating toxins: implications for structure-based drug design.
    Lee YM; Babu CS; Chen YC; Milcic M; Qu Y; Lim C
    J Med Chem; 2010 May; 53(10):4038-49. PubMed ID: 20420408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational plasticity is crucial for C3-RhoA complex formation by ARTT-loop.
    Tsuge H; Yoshida T; Tsurumura T
    Pathog Dis; 2015 Dec; 73(9):ftv094. PubMed ID: 26474844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouse T cell membrane proteins Rt6-1 and Rt6-2 are arginine/protein mono(ADPribosyl)transferases and share secondary structure motifs with ADP-ribosylating bacterial toxins.
    Koch-Nolte F; Petersen D; Balasubramanian S; Haag F; Kahlke D; Willer T; Kastelein R; Bazan F; Thiele HG
    J Biol Chem; 1996 Mar; 271(13):7686-93. PubMed ID: 8631807
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange of glutamine-217 to glutamate of Clostridium limosum exoenzyme C3 turns the asparagine-specific ADP-ribosyltransferase into an arginine-modifying enzyme.
    Vogelsgesang M; Aktories K
    Biochemistry; 2006 Jan; 45(3):1017-25. PubMed ID: 16411778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Substrate N
    Yoshida T; Tsuge H
    J Biol Chem; 2018 Sep; 293(36):13768-13774. PubMed ID: 30072382
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evolution and mechanism from structures of an ADP-ribosylating toxin and NAD complex.
    Han S; Craig JA; Putnam CD; Carozzi NB; Tainer JA
    Nat Struct Biol; 1999 Oct; 6(10):932-6. PubMed ID: 10504727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common structure of the catalytic sites of mammalian and bacterial toxin ADP-ribosyltransferases.
    Okazaki IJ; Moss J
    Mol Cell Biochem; 1994 Sep; 138(1-2):177-81. PubMed ID: 7898462
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular basis of threonine ADP-ribosylation of ubiquitin by bacterial ARTs.
    Tan J; Xu Y; Wang X; Yan F; Xian W; Liu X; Chen Y; Zhu Y; Zhou Y
    Nat Chem Biol; 2024 Apr; 20(4):463-472. PubMed ID: 37945894
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure-function analysis of the Rho-ADP-ribosylating exoenzyme C3stau2 from Staphylococcus aureus.
    Wilde C; Just I; Aktories K
    Biochemistry; 2002 Feb; 41(5):1539-44. PubMed ID: 11814347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of mammalian ADP-ribosylation cycles.
    Okazaki IJ; Zolkiewska A; Takada T; Moss J
    Biochimie; 1995; 77(5):319-25. PubMed ID: 8527484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of glutamic acid 988 of human poly-ADP-ribose polymerase in polymer formation. Evidence for active site similarities to the ADP-ribosylating toxins.
    Marsischky GT; Wilson BA; Collier RJ
    J Biol Chem; 1995 Feb; 270(7):3247-54. PubMed ID: 7852410
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bacterial ADP-ribosylating toxins: molecular structures and signal transducing functions.
    Kato I
    Microbiol Immunol; 1991; 35(5):349-59. PubMed ID: 1943847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evidence that Arg-295, Glu-378, and Glu-380 are active-site residues of the ADP-ribosyltransferase activity of iota toxin.
    Perelle S; Domenighini M; Popoff MR
    FEBS Lett; 1996 Oct; 395(2-3):191-4. PubMed ID: 8898093
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of novel components of NAD-utilizing metabolic pathways and prediction of their biochemical functions.
    de Souza RF; Aravind L
    Mol Biosyst; 2012 Jun; 8(6):1661-77. PubMed ID: 22399070
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate-assisted catalysis by PARP10 limits its activity to mono-ADP-ribosylation.
    Kleine H; Poreba E; Lesniewicz K; Hassa PO; Hottiger MO; Litchfield DW; Shilton BH; Lüscher B
    Mol Cell; 2008 Oct; 32(1):57-69. PubMed ID: 18851833
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [Structure of ADP-ribosylating enzyme and DNA repair].
    Uchida K
    Nihon Rinsho; 1993 Nov; 51(11):3051-61. PubMed ID: 8277589
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Common features of the NAD-binding and catalytic site of ADP-ribosylating toxins.
    Domenighini M; Magagnoli C; Pizza M; Rappuoli R
    Mol Microbiol; 1994 Oct; 14(1):41-50. PubMed ID: 7830559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.