These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

106 related articles for article (PubMed ID: 11890703)

  • 1. Nucleosome linker proteins HMGB1 and histone H1 differentially enhance DNA ligation reactions.
    Yamanaka S; Katayama E; Yoshioka K; Nagaki S; Yoshida M; Teraoka H
    Biochem Biophys Res Commun; 2002 Mar; 292(1):268-73. PubMed ID: 11890703
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation of linker histones by DNA-dependent protein kinase is required for DNA ligase IV-dependent ligation in the presence of histone H1.
    Kysela B; Chovanec M; Jeggo PA
    Proc Natl Acad Sci U S A; 2005 Feb; 102(6):1877-82. PubMed ID: 15671175
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-histone chromosomal proteins HMG1 and 2 enhance ligation reaction of DNA double-strand breaks.
    Nagaki S; Yamamoto M; Yumoto Y; Shirakawa H; Yoshida M; Teraoka H
    Biochem Biophys Res Commun; 1998 May; 246(1):137-41. PubMed ID: 9600082
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Histone H1 Differentially Inhibits DNA Bending by Reduced and Oxidized HMGB1 Protein.
    Štros M; Polanská E; Kučírek M; Pospíšilová Š
    PLoS One; 2015; 10(9):e0138774. PubMed ID: 26406975
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [The structure of the complexes of DNA with chromosomal protein HMGB1 and histone H1 in the presence of manganese ions. I. Circular dicroism spectroscopy].
    Chikhirzhina EV; Polianichko AM; Kostyleva EI; Vorob'ev VI
    Mol Biol (Mosk); 2011; 45(2):356-65. PubMed ID: 21634123
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and Dynamics of a 197 bp Nucleosome in Complex with Linker Histone H1.
    Bednar J; Garcia-Saez I; Boopathi R; Cutter AR; Papai G; Reymer A; Syed SH; Lone IN; Tonchev O; Crucifix C; Menoni H; Papin C; Skoufias DA; Kurumizaka H; Lavery R; Hamiche A; Hayes JJ; Schultz P; Angelov D; Petosa C; Dimitrov S
    Mol Cell; 2017 May; 66(3):384-397.e8. PubMed ID: 28475873
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human DNA ligase I efficiently seals nicks in nucleosomes.
    Chafin DR; Vitolo JM; Henricksen LA; Bambara RA; Hayes JJ
    EMBO J; 2000 Oct; 19(20):5492-501. PubMed ID: 11032816
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of histone H1, poly(ethyleneglycol) and DNA concentration on intermolecular and intramolecular ligation by T4 DNA ligase.
    Sobczak J; Duguet M
    Eur J Biochem; 1988 Aug; 175(2):379-85. PubMed ID: 2841134
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Human Ligase IIIα-XRCC1 Protein Complex Performs DNA Nick Repair after Transient Unwrapping of Nucleosomal DNA.
    Cannan WJ; Rashid I; Tomkinson AE; Wallace SS; Pederson DS
    J Biol Chem; 2017 Mar; 292(13):5227-5238. PubMed ID: 28184006
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Binding of histone H1 to DNA is differentially modulated by redox state of HMGB1.
    Polanská E; Pospíšilová Š; Štros M
    PLoS One; 2014; 9(2):e89070. PubMed ID: 24551219
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Fine resolution of the poly ADP-ribosylated domains of polynucleosomal chromatin: DNA gene and integrity analysis; mechanism of histone H1 modification.
    Smulson M; Malik N; Wong M; Pomato N; Thraves P
    Princess Takamatsu Symp; 1983; 13():49-70. PubMed ID: 6418715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interaction of HMGB1 and linker histones occurs through their acidic and basic tails.
    Cato L; Stott K; Watson M; Thomas JO
    J Mol Biol; 2008 Dec; 384(5):1262-72. PubMed ID: 18948112
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A quantitative investigation of linker histone interactions with nucleosomes and chromatin.
    White AE; Hieb AR; Luger K
    Sci Rep; 2016 Jan; 6():19122. PubMed ID: 26750377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Yeast HMO1: Linker Histone Reinvented.
    Panday A; Grove A
    Microbiol Mol Biol Rev; 2017 Mar; 81(1):. PubMed ID: 27903656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Interaction between non-histone chromatin protein HMGB1 and linker histone H1].
    Fonin AV; Stepanenko OV; Turoverov KK; Vorob'ev VI
    Tsitologiia; 2010; 52(11):946-9. PubMed ID: 21268854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Different types of V(D)J recombination and end-joining defects in DNA double-strand break repair mutant mammalian cells.
    Verkaik NS; Esveldt-van Lange RE; van Heemst D; Brüggenwirth HT; Hoeijmakers JH; Zdzienicka MZ; van Gent DC
    Eur J Immunol; 2002 Mar; 32(3):701-9. PubMed ID: 11870614
    [TBL] [Abstract][Full Text] [Related]  

  • 17. H1 and HMGB1: modulators of chromatin structure.
    Thomas JO; Stott K
    Biochem Soc Trans; 2012 Apr; 40(2):341-6. PubMed ID: 22435809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interaction of maize chromatin-associated HMG proteins with mononucleosomes: role of core and linker histones.
    Lichota J; Grasser KD
    Biol Chem; 2003 Jul; 384(7):1019-27. PubMed ID: 12956418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PARP-1 and Ku compete for repair of DNA double strand breaks by distinct NHEJ pathways.
    Wang M; Wu W; Wu W; Rosidi B; Zhang L; Wang H; Iliakis G
    Nucleic Acids Res; 2006; 34(21):6170-82. PubMed ID: 17088286
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibition of DNA ligase activity by histones and its reversal by poly(ADP-ribose).
    Ueda K; Ohashi Y; Hatakeyama K; Hayaishi O
    Princess Takamatsu Symp; 1983; 13():175-82. PubMed ID: 6654829
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.