These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Multiple chicken repeat 1 lineages in the genomes of oestroid flies. Thompson ML; Gauna AE; Williams ML; Ray DA Gene; 2009 Dec; 448(1):40-5. PubMed ID: 19716865 [TBL] [Abstract][Full Text] [Related]
43. Identification of the endonuclease domain encoded by R2 and other site-specific, non-long terminal repeat retrotransposable elements. Yang J; Malik HS; Eickbush TH Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7847-52. PubMed ID: 10393910 [TBL] [Abstract][Full Text] [Related]
44. Genome-wide characterization of long terminal repeat -retrotransposons in apple reveals the differences in heterogeneity and copy number between Ty1-copia and Ty3-gypsy retrotransposons. Sun HY; Dai HY; Zhao GL; Ma Y; Ou CQ; Li H; Li LG; Zhang ZH J Integr Plant Biol; 2008 Sep; 50(9):1130-9. PubMed ID: 18844781 [TBL] [Abstract][Full Text] [Related]
45. Characterization and expression of a novel cystatin gene from Schistosoma japonicum. He B; Cai G; Ni Y; Li Y; Zong H; He L Mol Cell Probes; 2011 Aug; 25(4):186-93. PubMed ID: 21601634 [TBL] [Abstract][Full Text] [Related]
46. PpRT1: the first complete gypsy-like retrotransposon isolated in Pinus pinaster. Rocheta M; Cordeiro J; Oliveira M; Miguel C Planta; 2007 Feb; 225(3):551-62. PubMed ID: 17008993 [TBL] [Abstract][Full Text] [Related]
47. A new non-LTR retrotransposon provides evidence for multiple distinct site-specific elements in Crithidia fasciculata miniexon arrays. Teng SC; Wang SX; Gabriel A Nucleic Acids Res; 1995 Aug; 23(15):2929-36. PubMed ID: 7659515 [TBL] [Abstract][Full Text] [Related]
48. The first non-LTR retrotransposon characterised in the cephalochordate amphioxus, BfCR1, shows similarities to CR1-like elements. Albalat R; Permanyer J; Cañestro C; Martínez-Mir A; Gonzàlez-Angulo O; Gonzàlez-Duarte R Cell Mol Life Sci; 2003 Apr; 60(4):803-9. PubMed ID: 12785727 [TBL] [Abstract][Full Text] [Related]
49. The RTE class of non-LTR retrotransposons is widely distributed in animals and is the origin of many SINEs. Malik HS; Eickbush TH Mol Biol Evol; 1998 Sep; 15(9):1123-34. PubMed ID: 9729877 [TBL] [Abstract][Full Text] [Related]
50. A search for reverse transcriptase-coding sequences reveals new non-LTR retrotransposons in the genome of Drosophila melanogaster. Berezikov E; Bucheton A; Busseau I Genome Biol; 2000; 1(6):RESEARCH0012. PubMed ID: 11178266 [TBL] [Abstract][Full Text] [Related]
51. Evidence of multiple retrotransposons in two litopenaeid species. Hizer SE; Tamulis WG; Robertson LM; Garcia DK Anim Genet; 2008 Aug; 39(4):363-73. PubMed ID: 18557973 [TBL] [Abstract][Full Text] [Related]
52. Evolutionary and biomedical implications of a Schistosoma japonicum complementary DNA resource. Hu W; Yan Q; Shen DK; Liu F; Zhu ZD; Song HD; Xu XR; Wang ZJ; Rong YP; Zeng LC; Wu J; Zhang X; Wang JJ; Xu XN; Wang SY; Fu G; Zhang XL; Wang ZQ; Brindley PJ; McManus DP; Xue CL; Feng Z; Chen Z; Han ZG Nat Genet; 2003 Oct; 35(2):139-47. PubMed ID: 12973349 [TBL] [Abstract][Full Text] [Related]
53. NfCR1, the first non-LTR retrotransposon characterized in the Australian lungfish genome, Neoceratodus forsteri, shows similarities to CR1-like elements. Sirijovski N; Woolnough C; Rock J; Joss JM J Exp Zool B Mol Dev Evol; 2005 Jan; 304(1):40-9. PubMed ID: 15593278 [TBL] [Abstract][Full Text] [Related]
54. Cloning the genes and DNA binding properties of High Mobility Group B1 (HMGB1) proteins from the human blood flukes Schistosoma mansoni and Schistosoma japonicum. de Oliveira FM; de Abreu da Silva IC; Rumjanek FD; Dias-Neto E; Guimarães PE; Verjovski-Almeida S; Stros M; Fantappié MR Gene; 2006 Aug; 377():33-45. PubMed ID: 16644144 [TBL] [Abstract][Full Text] [Related]
55. R5 retrotransposons insert into a family of infrequently transcribed 28S rRNA genes of planaria. Burke WD; Singh D; Eickbush TH Mol Biol Evol; 2003 Aug; 20(8):1260-70. PubMed ID: 12777502 [TBL] [Abstract][Full Text] [Related]
56. A new look at the LTR retrotransposon content of the chicken genome. Mason AS; Fulton JE; Hocking PM; Burt DW BMC Genomics; 2016 Aug; 17(1):688. PubMed ID: 27577548 [TBL] [Abstract][Full Text] [Related]
57. Molecular characterization of the Sasanda LTR copia retrotransposon family uncovers their recent amplification in Triticum aestivum (L.) genome. Ragupathy R; Banks T; Cloutier S Mol Genet Genomics; 2010 Mar; 283(3):255-71. PubMed ID: 20127492 [TBL] [Abstract][Full Text] [Related]
58. PENELOPE-LIKE RETROTRANSPOSONS IN THE GENOME OF ASIAN BLOOD FLUKE SCHISTOSOMA JAPONICUM (TREMATODA: SCHISTOSOMATIDAE). Guliaev AS; Chrisanfova GG; Seinyenova SK Mol Gen Mikrobiol Virusol; 2017; 35(1):20-25. PubMed ID: 30561940 [TBL] [Abstract][Full Text] [Related]
59. Identification of the Boudicca and Sinbad retrotransposons in the genome of the human blood fluke Schistosoma haematobium. Copeland CS; Lewis FA; Brindley PJ Mem Inst Oswaldo Cruz; 2006 Aug; 101(5):565-71. PubMed ID: 17072464 [TBL] [Abstract][Full Text] [Related]
60. Evolutionary course of CsRn1 long-terminal-repeat retrotransposon and its heterogeneous integrations into the genome of the liver fluke, Clonorchis sinensis. Bae YA; Kong Y Korean J Parasitol; 2003 Dec; 41(4):209-19. PubMed ID: 14699262 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]