These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 11891143)

  • 1. Improved estimators for fractional Brownian motion via the expectation-maximization algorithm.
    Fischer R; Akay M
    Med Eng Phys; 2002 Jan; 24(1):77-83. PubMed ID: 11891143
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A comparison of analytical methods for the study of fractional Brownian motion.
    Fischer R; Akay M
    Ann Biomed Eng; 1996; 24(4):537-43. PubMed ID: 8841727
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modified periodogram method for estimating the Hurst exponent of fractional Gaussian noise.
    Liu Y; Liu Y; Wang K; Jiang T; Yang L
    Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Dec; 80(6 Pt 2):066207. PubMed ID: 20365254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Fractional Gaussian noise, functional MRI and Alzheimer's disease.
    Maxim V; Sendur L; Fadili J; Suckling J; Gould R; Howard R; Bullmore E
    Neuroimage; 2005 Mar; 25(1):141-58. PubMed ID: 15734351
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Anomalous diffusion, aging, and nonergodicity of scaled Brownian motion with fractional Gaussian noise: overview of related experimental observations and models.
    Wang W; Metzler R; Cherstvy AG
    Phys Chem Chem Phys; 2022 Aug; 24(31):18482-18504. PubMed ID: 35838015
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Homology groups of embedded fractional Brownian motion.
    Masoomy H; Tajik S; Movahed SMS
    Phys Rev E; 2022 Dec; 106(6-1):064115. PubMed ID: 36671107
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Scaling Exponents of Time Series Data: A Machine Learning Approach.
    Raubitzek S; Corpaci L; Hofer R; Mallinger K
    Entropy (Basel); 2023 Dec; 25(12):. PubMed ID: 38136551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An efficient estimator of Hurst exponent through an autoregressive model with an order selected by data induction.
    Chang YC
    Biomed Mater Eng; 2014; 24(6):3557-68. PubMed ID: 25227069
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Estimation of 2-D noisy fractional Brownian motion and its applications using wavelets.
    Liu JC; Hwang WL; Chen MS
    IEEE Trans Image Process; 2000; 9(8):1407-19. PubMed ID: 18262977
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fast estimation of diffusion tensors under Rician noise by the EM algorithm.
    Liu J; Gasbarra D; Railavo J
    J Neurosci Methods; 2016 Jan; 257():147-58. PubMed ID: 26456357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Hurst exponent estimator based on autoregressive power spectrum estimation with order selection.
    Chang YC; Lai LC; Chen LH; Chang CM; Chueh CC
    Biomed Mater Eng; 2014; 24(1):1041-51. PubMed ID: 24211995
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fractional brownian motion: a maximum likelihood estimator and its application to image texture.
    Lundahl T; Ohley WJ; Kay SM; Siffert R
    IEEE Trans Med Imaging; 1986; 5(3):152-61. PubMed ID: 18244001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Distinguishing between fractional Brownian motion with random and constant Hurst exponent using sample autocovariance-based statistics.
    Grzesiek A; Gajda J; Thapa S; Wyłomańska A
    Chaos; 2024 Apr; 34(4):. PubMed ID: 38668586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dimension estimation of discrete-time fractional Brownian motion with applications to image texture classification.
    Liu SC; Chang S
    IEEE Trans Image Process; 1997; 6(8):1176-84. PubMed ID: 18283005
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A Note on Wavelet-Based Estimator of the Hurst Parameter.
    Wu L
    Entropy (Basel); 2020 Mar; 22(3):. PubMed ID: 33286123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Testing of Multifractional Brownian Motion.
    Balcerek M; Burnecki K
    Entropy (Basel); 2020 Dec; 22(12):. PubMed ID: 33322676
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detrended fluctuation analysis and the difference between external drifts and intrinsic diffusionlike nonstationarity.
    Höll M; Kantz H; Zhou Y
    Phys Rev E; 2016 Oct; 94(4-1):042201. PubMed ID: 27841528
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Relationships of exponents in two-dimensional multifractal detrended fluctuation analysis.
    Zhou Y; Leung Y; Yu ZG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2013 Jan; 87(1):012921. PubMed ID: 23410418
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physiological time series: distinguishing fractal noises from motions.
    Eke A; Hermán P; Bassingthwaighte JB; Raymond GM; Percival DB; Cannon M; Balla I; Ikrényi C
    Pflugers Arch; 2000 Feb; 439(4):403-15. PubMed ID: 10678736
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic properties of detrended fluctuation analysis for Gaussian processes.
    Sikora G; Höll M; Gajda J; Kantz H; Chechkin A; Wyłomańska A
    Phys Rev E; 2020 Mar; 101(3-1):032114. PubMed ID: 32289956
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.