BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 11891227)

  • 1. Functionality of alternative splice forms of the first enzymes involved in human molybdenum cofactor biosynthesis.
    Hänzelmann P; Schwarz G; Mendel RR
    J Biol Chem; 2002 May; 277(21):18303-12. PubMed ID: 11891227
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diverse splicing mechanisms fuse the evolutionarily conserved bicistronic MOCS1A and MOCS1B open reading frames.
    Gray TA; Nicholls RD
    RNA; 2000 Jul; 6(7):928-36. PubMed ID: 10917590
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of MOCS1A, an oxygen-sensitive iron-sulfur protein involved in human molybdenum cofactor biosynthesis.
    Hänzelmann P; Hernández HL; Menzel C; García-Serres R; Huynh BH; Johnson MK; Mendel RR; Schindelin H
    J Biol Chem; 2004 Aug; 279(33):34721-32. PubMed ID: 15180982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutations in the molybdenum cofactor biosynthetic genes MOCS1, MOCS2, and GEPH.
    Reiss J; Johnson JL
    Hum Mutat; 2003 Jun; 21(6):569-76. PubMed ID: 12754701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Alternative splicing of the bicistronic gene molybdenum cofactor synthesis 1 (
    Mayr SJ; Röper J; Schwarz G
    J Biol Chem; 2020 Mar; 295(10):3029-3039. PubMed ID: 31996372
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanistic studies of human molybdopterin synthase reaction and characterization of mutants identified in group B patients of molybdenum cofactor deficiency.
    Leimkuhler S; Freuer A; Araujo JA; Rajagopalan KV; Mendel RR
    J Biol Chem; 2003 Jul; 278(28):26127-34. PubMed ID: 12732628
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ten novel mutations in the molybdenum cofactor genes MOCS1 and MOCS2 and in vitro characterization of a MOCS2 mutation that abolishes the binding ability of molybdopterin synthase.
    Leimkühler S; Charcosset M; Latour P; Dorche C; Kleppe S; Scaglia F; Szymczak I; Schupp P; Hahnewald R; Reiss J
    Hum Genet; 2005 Oct; 117(6):565-70. PubMed ID: 16021469
    [TBL] [Abstract][Full Text] [Related]  

  • 8. C-Terminal glycine-gated radical initiation by GTP 3',8-cyclase in the molybdenum cofactor biosynthesis.
    Hover BM; Yokoyama K
    J Am Chem Soc; 2015 Mar; 137(9):3352-9. PubMed ID: 25697423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A mild case of molybdenum cofactor deficiency defines an alternative route of MOCS1 protein maturation.
    Mayr SJ; Sass JO; Vry J; Kirschner J; Mader I; Hövener JB; Reiss J; Santamaria-Araujo JA; Schwarz G; Grünert SC
    J Inherit Metab Dis; 2018 Mar; 41(2):187-196. PubMed ID: 29368224
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal structure of a molybdopterin synthase-precursor Z complex: insight into its sulfur transfer mechanism and its role in molybdenum cofactor deficiency.
    Daniels JN; Wuebbens MM; Rajagopalan KV; Schindelin H
    Biochemistry; 2008 Jan; 47(2):615-26. PubMed ID: 18092812
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molybdenum cofactor biosynthesis in humans: identification of a persulfide group in the rhodanese-like domain of MOCS3 by mass spectrometry.
    Matthies A; Nimtz M; Leimkühler S
    Biochemistry; 2005 May; 44(21):7912-20. PubMed ID: 15910006
    [TBL] [Abstract][Full Text] [Related]  

  • 12. IscS functions as a primary sulfur-donating enzyme by interacting specifically with MoeB and MoaD in the biosynthesis of molybdopterin in Escherichia coli.
    Zhang W; Urban A; Mihara H; Leimkühler S; Kurihara T; Esaki N
    J Biol Chem; 2010 Jan; 285(4):2302-8. PubMed ID: 19946146
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetics of molybdenum cofactor deficiency.
    Reiss J
    Hum Genet; 2000 Feb; 106(2):157-63. PubMed ID: 10746556
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Human molybdopterin synthase gene: genomic structure and mutations in molybdenum cofactor deficiency type B.
    Reiss J; Dorche C; Stallmeyer B; Mendel RR; Cohen N; Zabot MT
    Am J Hum Genet; 1999 Mar; 64(3):706-11. PubMed ID: 10053004
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Activity of the molybdopterin-containing xanthine dehydrogenase of Rhodobacter capsulatus can be restored by high molybdenum concentrations in a moeA mutant defective in molybdenum cofactor biosynthesis.
    Leimkühler S; Angermüller S; Schwarz G; Mendel RR; Klipp W
    J Bacteriol; 1999 Oct; 181(19):5930-9. PubMed ID: 10498704
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crystal structures of human gephyrin and plant Cnx1 G domains: comparative analysis and functional implications.
    Schwarz G; Schrader N; Mendel RR; Hecht HJ; Schindelin H
    J Mol Biol; 2001 Sep; 312(2):405-18. PubMed ID: 11554796
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanistic and mutational studies of Escherichia coli molybdopterin synthase clarify the final step of molybdopterin biosynthesis.
    Wuebbens MM; Rajagopalan KV
    J Biol Chem; 2003 Apr; 278(16):14523-32. PubMed ID: 12571226
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence for the physiological role of a rhodanese-like protein for the biosynthesis of the molybdenum cofactor in humans.
    Matthies A; Rajagopalan KV; Mendel RR; Leimkühler S
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5946-51. PubMed ID: 15073332
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term rescue of a lethal inherited disease by adeno-associated virus-mediated gene transfer in a mouse model of molybdenum-cofactor deficiency.
    Kügler S; Hahnewald R; Garrido M; Reiss J
    Am J Hum Genet; 2007 Feb; 80(2):291-7. PubMed ID: 17236133
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The identification of a novel protein involved in molybdenum cofactor biosynthesis in Escherichia coli.
    Dahl JU; Urban A; Bolte A; Sriyabhaya P; Donahue JL; Nimtz M; Larson TJ; Leimkühler S
    J Biol Chem; 2011 Oct; 286(41):35801-35812. PubMed ID: 21856748
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.