These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 11891239)

  • 1. Temperature-induced extended helix/random coil transitions in a group 1 late embryogenesis-abundant protein from soybean.
    Soulages JL; Kim K; Walters C; Cushman JC
    Plant Physiol; 2002 Mar; 128(3):822-32. PubMed ID: 11891239
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation of a group 2 late embryogenesis abundant protein from soybean. Evidence of poly (L-proline)-type II structure.
    Soulages JL; Kim K; Arrese EL; Walters C; Cushman JC
    Plant Physiol; 2003 Mar; 131(3):963-75. PubMed ID: 12644649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of phosphorylation on the salt-tolerance-related functions of the soybean protein PM18, a member of the group-3 LEA protein family.
    Liu Y; Yang M; Cheng H; Sun N; Liu S; Li S; Wang Y; Zheng Y; Uversky VN
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt A):1291-1303. PubMed ID: 28867216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Functional studies of soybean (Glycine max L.) seed LEA proteins GmPM6, GmPM11, and GmPM30 by CD and FTIR spectroscopy.
    Shih MD; Hsieh TY; Jian WT; Wu MT; Yang SJ; Hoekstra FA; Hsing YI
    Plant Sci; 2012 Nov; 196():152-9. PubMed ID: 23017910
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of two soybean (Glycine max L.) LEA IV proteins by circular dichroism and Fourier transform infrared spectrometry.
    Shih MD; Hsieh TY; Lin TP; Hsing YI; Hoekstra FA
    Plant Cell Physiol; 2010 Mar; 51(3):395-407. PubMed ID: 20071374
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A predicted N-terminal helical domain of a Group 1 LEA protein is required for protection of enzyme activity from drying.
    Gilles GJ; Hines KM; Manfre AJ; Marcotte WR
    Plant Physiol Biochem; 2007; 45(6-7):389-99. PubMed ID: 17544288
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Gene cloning and characterization of a soybean (Glycine max L.) LEA protein, GmPM16.
    Shih MD; Lin SC; Hsieh JS; Tsou CH; Chow TY; Lin TP; Hsing YI
    Plant Mol Biol; 2004 Nov; 56(5):689-703. PubMed ID: 15803408
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural transitions in the intrinsically disordered plant dehydration stress protein LEA7 upon drying are modulated by the presence of membranes.
    Popova AV; Hundertmark M; Seckler R; Hincha DK
    Biochim Biophys Acta; 2011 Jul; 1808(7):1879-87. PubMed ID: 21443857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A group 6 late embryogenesis abundant protein from common bean is a disordered protein with extended helical structure and oligomer-forming properties.
    Rivera-Najera LY; Saab-Rincón G; Battaglia M; Amero C; Pulido NO; García-Hernández E; Solórzano RM; Reyes JL; Covarrubias AA
    J Biol Chem; 2014 Nov; 289(46):31995-32009. PubMed ID: 25271167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyproline II structure is critical for the enzyme protective function of soybean Em (LEA1) conserved domains.
    Zou Y; Hong R; He S; Liu G; Huang Z; Zheng Y
    Biotechnol Lett; 2011 Aug; 33(8):1667-73. PubMed ID: 21455835
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression and characterization of the N-terminal domain of an oleosin protein from sunflower.
    Li M; Keddie JS; Smith LJ; Clark DC; Murphy DJ
    J Biol Chem; 1993 Aug; 268(23):17504-12. PubMed ID: 8102367
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural properties and enzyme stabilization function of the intrinsically disordered LEA_4 protein TdLEA3 from wheat.
    Koubaa S; Bremer A; Hincha DK; Brini F
    Sci Rep; 2019 Mar; 9(1):3720. PubMed ID: 30842512
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Induction of alpha-helix in the beta-sheet protein tumor necrosis factor-alpha: thermal- and trifluoroethanol-induced denaturation at neutral pH.
    Narhi LO; Philo JS; Li T; Zhang M; Samal B; Arakawa T
    Biochemistry; 1996 Sep; 35(35):11447-53. PubMed ID: 8784200
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermolecular beta-sheet results from trifluoroethanol-induced nonnative alpha-helical structure in beta-sheet predominant proteins: infrared and circular dichroism spectroscopic study.
    Dong A; Matsuura J; Manning MC; Carpenter JF
    Arch Biochem Biophys; 1998 Jul; 355(2):275-81. PubMed ID: 9675038
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cloning and molecular characterization of a gene encoding late embryogenesis abundant protein from Pennisetum glaucum: protection against abiotic stresses.
    Reddy PS; Reddy GM; Pandey P; Chandrasekhar K; Reddy MK
    Mol Biol Rep; 2012 Jun; 39(6):7163-74. PubMed ID: 22311039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Trifluoroethanol-induced conformational change of tetrameric and monomeric soybean agglutinin: role of structural organization and implication for protein folding and stability.
    Molla AR; Mandal DK
    Biochimie; 2013 Feb; 95(2):204-14. PubMed ID: 23022144
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The N-Terminal Region of Soybean PM1 Protein Protects Liposomes during Freeze-Thaw.
    Chen L; Sun Y; Liu Y; Zou Y; Huang J; Zheng Y; Liu G
    Int J Mol Sci; 2020 Aug; 21(15):. PubMed ID: 32756462
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Functional assessment of hydrophilic domains of late embryogenesis abundant proteins from distant organisms.
    Liu Y; Zhang H; Han J; Jiang S; Geng X; Xue D; Chen Y; Zhang C; Zhou Z; Zhang W; Chen M; Lin M; Wang J
    Microb Biotechnol; 2019 Jul; 12(4):752-762. PubMed ID: 31012266
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Homooligopeptides composed of hydrophobic amino acid residues interact in a specific manner by taking alpha-helix or beta-structure toward lipid bilayers.
    Lee S; Yoshitomi H; Morikawa M; Ando S; Takiguchi H; Inoue T; Sugihara G
    Biopolymers; 1995 Sep; 36(3):391-8. PubMed ID: 7669922
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformation of a water-soluble beta-sheet model peptide. A circular dichroism and Fourier-transform infrared spectroscopic study of double D-amino acid replacements.
    Krause E; Beyermann M; Fabian H; Dathe M; Rothemund S; Bienert M
    Int J Pept Protein Res; 1996 Dec; 48(6):559-68. PubMed ID: 8985789
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.