These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 11891276)
1. Vanadate trapping of nucleotide at the ATP-binding sites of human multidrug resistance P-glycoprotein exposes different residues to the drug-binding site. Loo TW; Clarke DM Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3511-6. PubMed ID: 11891276 [TBL] [Abstract][Full Text] [Related]
2. Nucleotide binding, ATP hydrolysis, and mutation of the catalytic carboxylates of human P-glycoprotein cause distinct conformational changes in the transmembrane segments. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2007 Aug; 46(32):9328-36. PubMed ID: 17636884 [TBL] [Abstract][Full Text] [Related]
3. ATP hydrolysis promotes interactions between the extracellular ends of transmembrane segments 1 and 11 of human multidrug resistance P-glycoprotein. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2005 Aug; 44(30):10250-8. PubMed ID: 16042402 [TBL] [Abstract][Full Text] [Related]
4. Disulfide cross-linking analysis shows that transmembrane segments 5 and 8 of human P-glycoprotein are close together on the cytoplasmic side of the membrane. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2004 Feb; 279(9):7692-7. PubMed ID: 14670948 [TBL] [Abstract][Full Text] [Related]
5. Substrate-induced conformational changes in the transmembrane segments of human P-glycoprotein. Direct evidence for the substrate-induced fit mechanism for drug binding. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Apr; 278(16):13603-6. PubMed ID: 12609990 [TBL] [Abstract][Full Text] [Related]
6. Transmembrane segment 7 of human P-glycoprotein forms part of the drug-binding pocket. Loo TW; Bartlett MC; Clarke DM Biochem J; 2006 Oct; 399(2):351-9. PubMed ID: 16813563 [TBL] [Abstract][Full Text] [Related]
7. Cross-linking of human multidrug resistance P-glycoprotein by the substrate, tris-(2-maleimidoethyl)amine, is altered by ATP hydrolysis. Evidence for rotation of a transmembrane helix. Loo TW; Clarke DM J Biol Chem; 2001 Aug; 276(34):31800-5. PubMed ID: 11429407 [TBL] [Abstract][Full Text] [Related]
8. Defining the drug-binding site in the human multidrug resistance P-glycoprotein using a methanethiosulfonate analog of verapamil, MTS-verapamil. Loo TW; Clarke DM J Biol Chem; 2001 May; 276(18):14972-9. PubMed ID: 11279063 [TBL] [Abstract][Full Text] [Related]
9. The drug-binding pocket of the human multidrug resistance P-glycoprotein is accessible to the aqueous medium. Loo TW; Bartlett MC; Clarke DM Biochemistry; 2004 Sep; 43(38):12081-9. PubMed ID: 15379547 [TBL] [Abstract][Full Text] [Related]
10. The packing of the transmembrane segments of human multidrug resistance P-glycoprotein is revealed by disulfide cross-linking analysis. Loo TW; Clarke DM J Biol Chem; 2000 Feb; 275(8):5253-6. PubMed ID: 10681495 [TBL] [Abstract][Full Text] [Related]
11. Inhibition of oxidative cross-linking between engineered cysteine residues at positions 332 in predicted transmembrane segments (TM) 6 and 975 in predicted TM12 of human P-glycoprotein by drug substrates. Loo TW; Clarke DM J Biol Chem; 1996 Nov; 271(44):27482-7. PubMed ID: 8910331 [TBL] [Abstract][Full Text] [Related]
12. Simultaneous binding of two different drugs in the binding pocket of the human multidrug resistance P-glycoprotein. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2003 Oct; 278(41):39706-10. PubMed ID: 12909621 [TBL] [Abstract][Full Text] [Related]
13. Drug-stimulated ATPase activity of human P-glycoprotein requires movement between transmembrane segments 6 and 12. Loo TW; Clarke DM J Biol Chem; 1997 Aug; 272(34):20986-9. PubMed ID: 9261097 [TBL] [Abstract][Full Text] [Related]
14. Val133 and Cys137 in transmembrane segment 2 are close to Arg935 and Gly939 in transmembrane segment 11 of human P-glycoprotein. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2004 Apr; 279(18):18232-8. PubMed ID: 14749322 [TBL] [Abstract][Full Text] [Related]
15. Cysteines introduced into extracellular loops 1 and 4 of human P-glycoprotein that are close only in the open conformation spontaneously form a disulfide bond that inhibits drug efflux and ATPase activity. Loo TW; Clarke DM J Biol Chem; 2014 Sep; 289(36):24749-58. PubMed ID: 25053414 [TBL] [Abstract][Full Text] [Related]
16. Transmembrane helix 12 plays a pivotal role in coupling energy provision and drug binding in ABCB1. Crowley E; O'Mara ML; Kerr ID; Callaghan R FEBS J; 2010 Oct; 277(19):3974-85. PubMed ID: 20731718 [TBL] [Abstract][Full Text] [Related]
17. Modulator-induced interference in functional cross talk between the substrate and the ATP sites of human P-glycoprotein. Maki N; Moitra K; Silver C; Ghosh P; Chattopadhyay A; Dey S Biochemistry; 2006 Feb; 45(8):2739-51. PubMed ID: 16489767 [TBL] [Abstract][Full Text] [Related]
18. Drug binding and nucleotide hydrolyzability are essential requirements in the vanadate-induced inhibition of the human P-glycoprotein ATPase. Rao US Biochemistry; 1998 Oct; 37(42):14981-8. PubMed ID: 9778376 [TBL] [Abstract][Full Text] [Related]
19. Identification of residues in the drug translocation pathway of the human multidrug resistance P-glycoprotein by arginine mutagenesis. Loo TW; Bartlett MC; Clarke DM J Biol Chem; 2009 Sep; 284(36):24074-87. PubMed ID: 19581304 [TBL] [Abstract][Full Text] [Related]
20. Membrane topology of a cysteine-less mutant of human P-glycoprotein. Loo TW; Clarke DM J Biol Chem; 1995 Jan; 270(2):843-8. PubMed ID: 7822320 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]