These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
343 related articles for article (PubMed ID: 11891286)
1. A robust inducible-repressible promoter greatly facilitates gene knockouts, conditional expression, and overexpression of homologous and heterologous genes in Tetrahymena thermophila. Shang Y; Song X; Bowen J; Corstanje R; Gao Y; Gaertig J; Gorovsky MA Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3734-9. PubMed ID: 11891286 [TBL] [Abstract][Full Text] [Related]
2. Metallothionein gene from Tetrahymena thermophila with a copper-inducible-repressible promoter. Boldrin F; Santovito G; Gaertig J; Wloga D; Cassidy-Hanley D; Clark TG; Piccinni E Eukaryot Cell; 2006 Feb; 5(2):422-5. PubMed ID: 16467482 [TBL] [Abstract][Full Text] [Related]
3. Functional characterization of the 5'-upstream region of MTT5 metallothionein gene from Tetrahymena thermophila. Formigari A; Boldrin F; Santovito G; Cassidy-Hanley D; Clark TG; Piccinni E Protist; 2010 Jan; 161(1):71-7. PubMed ID: 19674934 [TBL] [Abstract][Full Text] [Related]
4. A novel robust heat-inducible promoter for heterologous gene expression in Tetrahymena thermophila. Yu T; Barchetta S; Pucciarelli S; La Terza A; Miceli C Protist; 2012 Mar; 163(2):284-95. PubMed ID: 21803651 [TBL] [Abstract][Full Text] [Related]
5. MTT2, a copper-inducible metallothionein gene from Tetrahymena thermophila. Boldrin F; Santovito G; Formigari A; Bisharyan Y; Cassidy-Hanley D; Clark TG; Piccinni E Comp Biochem Physiol C Toxicol Pharmacol; 2008 Mar; 147(2):232-40. PubMed ID: 18068524 [TBL] [Abstract][Full Text] [Related]
6. Functional comparison of metallothioneins MTT1 and MTT2 from Tetrahymena thermophila. Wang Q; Xu J; Chai B; Liang A; Wang W Arch Biochem Biophys; 2011 May; 509(2):170-6. PubMed ID: 21352798 [TBL] [Abstract][Full Text] [Related]
7. Germ-line knockout heterokaryons of an essential alpha-tubulin gene enable high-frequency gene replacement and a test of gene transfer from somatic to germ-line nuclei in Tetrahymena thermophila. Hai B; Gorovsky MA Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1310-5. PubMed ID: 9037049 [TBL] [Abstract][Full Text] [Related]
8. Surface display of a parasite antigen in the ciliate Tetrahymena thermophila. Gaertig J; Gao Y; Tishgarten T; Clark TG; Dickerson HW Nat Biotechnol; 1999 May; 17(5):462-5. PubMed ID: 10331805 [TBL] [Abstract][Full Text] [Related]
9. Puromycin resistance gene as an effective selection marker for ciliate Tetrahymena. Iwamoto M; Mori C; Hiraoka Y; Haraguchi T Gene; 2014 Jan; 534(2):249-55. PubMed ID: 24185080 [TBL] [Abstract][Full Text] [Related]
10. High frequency vector-mediated transformation and gene replacement in Tetrahymena. Gaertig J; Gu L; Hai B; Gorovsky MA Nucleic Acids Res; 1994 Dec; 22(24):5391-8. PubMed ID: 7816630 [TBL] [Abstract][Full Text] [Related]
11. Identification of an essential proximal sequence element in the promoter of the telomerase RNA gene of Tetrahymena thermophila. Hargrove BW; Bhattacharyya A; Domitrovich AM; Kapler GM; Kirk K; Shippen DE; Kunkel GR Nucleic Acids Res; 1999 Nov; 27(21):4269-75. PubMed ID: 10518620 [TBL] [Abstract][Full Text] [Related]
12. Tudor nuclease genes and programmed DNA rearrangements in Tetrahymena thermophila. Howard-Till RA; Yao MC Eukaryot Cell; 2007 Oct; 6(10):1795-804. PubMed ID: 17715366 [TBL] [Abstract][Full Text] [Related]
13. Genome plasticity in response to stress in Tetrahymena thermophila: selective and reversible chromosome amplification and paralogous expansion of metallothionein genes. de Francisco P; Martín-González A; Turkewitz AP; Gutiérrez JC Environ Microbiol; 2018 Jul; 20(7):2410-2421. PubMed ID: 29687579 [TBL] [Abstract][Full Text] [Related]
14. Extreme metal adapted, knockout and knockdown strains reveal a coordinated gene expression among different Tetrahymena thermophila metallothionein isoforms. de Francisco P; Martín-González A; Turkewitz AP; Gutiérrez JC PLoS One; 2017; 12(12):e0189076. PubMed ID: 29206858 [TBL] [Abstract][Full Text] [Related]
15. Functional analysis of metallothionein MTT5 from Tetrahymena thermophila. Zhou H; Xu J; Wang W J Cell Biochem; 2018 Apr; 119(4):3257-3266. PubMed ID: 29091311 [TBL] [Abstract][Full Text] [Related]
16. Tetrahymena thermophila contains a conventional gamma-tubulin that is differentially required for the maintenance of different microtubule-organizing centers. Shang Y; Li B; Gorovsky MA J Cell Biol; 2002 Sep; 158(7):1195-206. PubMed ID: 12356864 [TBL] [Abstract][Full Text] [Related]
17. Functional GFP-metallothionein fusion protein from Tetrahymena thermophila: a potential whole-cell biosensor for monitoring heavy metal pollution and a cell model to study metallothionein overproduction effects. Amaro F; Turkewitz AP; Martín-González A; Gutiérrez JC Biometals; 2014 Feb; 27(1):195-205. PubMed ID: 24430977 [TBL] [Abstract][Full Text] [Related]
18. Lanthanum(III) impacts on metallothionein MTT1 and MTT2 from Tetrahymena thermophila. Wang Q; Xu J; Zhu Y; Chai B; Liang A; Wang W Biol Trace Elem Res; 2011 Dec; 143(3):1808-18. PubMed ID: 21359533 [TBL] [Abstract][Full Text] [Related]
19. Electroporation-mediated replacement of a positively and negatively selectable beta-tubulin gene in Tetrahymena thermophila. Gaertig J; Thatcher TH; Gu L; Gorovsky MA Proc Natl Acad Sci U S A; 1994 May; 91(10):4549-53. PubMed ID: 7910408 [TBL] [Abstract][Full Text] [Related]
20. Cloning and sequencing of four new metallothionein genes from Tetrahymena thermophila and T. pigmentosa: evolutionary relationships in Tetrahymena MT family. Boldrin F; Santovito G; Negrisolo E; Piccinni E Protist; 2003 Oct; 154(3-4):431-42. PubMed ID: 14658499 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]