These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 11891295)

  • 1. A Gaussian-chain model for treating residual charge-charge interactions in the unfolded state of proteins.
    Zhou HX
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3569-74. PubMed ID: 11891295
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge-charge interactions influence the denatured state ensemble and contribute to protein stability.
    Pace CN; Alston RW; Shaw KL
    Protein Sci; 2000 Jul; 9(7):1395-8. PubMed ID: 10933506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Realistic modeling of the denatured states of proteins allows accurate calculations of the pH dependence of protein stability.
    Elcock AH
    J Mol Biol; 1999 Dec; 294(4):1051-62. PubMed ID: 10588906
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrostatic contributions to T4 lysozyme stability: solvent-exposed charges versus semi-buried salt bridges.
    Dong F; Zhou HX
    Biophys J; 2002 Sep; 83(3):1341-7. PubMed ID: 12202359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct test of the Gaussian-chain model for treating residual charge-charge interactions in the unfolded state of proteins.
    Zhou HX
    J Am Chem Soc; 2003 Feb; 125(8):2060-1. PubMed ID: 12590529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Residual electrostatic effects in the unfolded state of the N-terminal domain of L9 can be attributed to nonspecific nonlocal charge-charge interactions.
    Zhou HX
    Biochemistry; 2002 May; 41(20):6533-8. PubMed ID: 12009918
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Residual charge interactions in unfolded staphylococcal nuclease can be explained by the Gaussian-chain model.
    Zhou HX
    Biophys J; 2002 Dec; 83(6):2981-6. PubMed ID: 12496071
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonnative electrostatic interactions can modulate protein folding: molecular dynamics with a grain of salt.
    Azia A; Levy Y
    J Mol Biol; 2009 Oct; 393(2):527-42. PubMed ID: 19683007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inverse electrostatic effect: electrostatic repulsion in the unfolded state stabilizes a leucine zipper.
    Marti DN; Bosshard HR
    Biochemistry; 2004 Oct; 43(39):12436-47. PubMed ID: 15449933
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stabilization of proteins by enhancement of inter-residue hydrophobic contacts: lessons of T4 lysozyme and barnase.
    Golovanov AP; Vergoten G; Arseniev AS
    J Biomol Struct Dyn; 2000 Dec; 18(3):477-91. PubMed ID: 11149522
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Urea denaturation of barnase: pH dependence and characterization of the unfolded state.
    Pace CN; Laurents DV; Erickson RE
    Biochemistry; 1992 Mar; 31(10):2728-34. PubMed ID: 1547213
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Charge sequence coding in statistical modeling of unfolded proteins.
    Kundrotas PJ; Karshikoff A
    Biochim Biophys Acta; 2004 Oct; 1702(1):1-8. PubMed ID: 15450845
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen bonding markedly reduces the pK of buried carboxyl groups in proteins.
    Thurlkill RL; Grimsley GR; Scholtz JM; Pace CN
    J Mol Biol; 2006 Sep; 362(3):594-604. PubMed ID: 16934292
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charge-charge interactions in the denatured state influence the folding kinetics of ribonuclease Sa.
    Trefethen JM; Pace CN; Scholtz JM; Brems DN
    Protein Sci; 2005 Jul; 14(7):1934-8. PubMed ID: 15937282
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increasing protein stability by altering long-range coulombic interactions.
    Grimsley GR; Shaw KL; Fee LR; Alston RW; Huyghues-Despointes BM; Thurlkill RL; Scholtz JM; Pace CN
    Protein Sci; 1999 Sep; 8(9):1843-9. PubMed ID: 10493585
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of the urea and guanidine hydrochloride denaturation of ribonuclease A and ribonuclease T1.
    Pace CN; Laurents DV; Thomson JA
    Biochemistry; 1990 Mar; 29(10):2564-72. PubMed ID: 2110472
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Polymer models of protein stability, folding, and interactions.
    Zhou HX
    Biochemistry; 2004 Mar; 43(8):2141-54. PubMed ID: 14979710
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Subdomain interactions as a determinant in the folding and stability of T4 lysozyme.
    Llinás M; Marqusee S
    Protein Sci; 1998 Jan; 7(1):96-104. PubMed ID: 9514264
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulation analysis of the stability mutants R96H of bacteriophage T4 lysozyme and I96A of barnase.
    Karplus M; Prévost M; Tidor B; Wodak S
    Ciba Found Symp; 1991; 161():63-74. PubMed ID: 1814697
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structural origins of pH and ionic strength effects on protein stability. Acid denaturation of sperm whale apomyoglobin.
    Yang AS; Honig B
    J Mol Biol; 1994 Apr; 237(5):602-14. PubMed ID: 8158640
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.