These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 11891336)

  • 1. Protein unfolding: rigidity lost.
    Rader AJ; Hespenheide BM; Kuhn LA; Thorpe MF
    Proc Natl Acad Sci U S A; 2002 Mar; 99(6):3540-5. PubMed ID: 11891336
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identifying protein folding cores from the evolution of flexible regions during unfolding.
    Hespenheide BM; Rader AJ; Thorpe MF; Kuhn LA
    J Mol Graph Model; 2002 Dec; 21(3):195-207. PubMed ID: 12463638
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein flexibility predictions using graph theory.
    Jacobs DJ; Rader AJ; Kuhn LA; Thorpe MF
    Proteins; 2001 Aug; 44(2):150-65. PubMed ID: 11391777
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Constraint Network Analysis (CNA): a Python software package for efficiently linking biomacromolecular structure, flexibility, (thermo-)stability, and function.
    Pfleger C; Rathi PC; Klein DL; Radestock S; Gohlke H
    J Chem Inf Model; 2013 Apr; 53(4):1007-15. PubMed ID: 23517329
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-pressure denaturation of staphylococcal nuclease proline-to-glycine substitution mutants.
    Vidugiris GJ; Truckses DM; Markley JL; Royer CA
    Biochemistry; 1996 Mar; 35(12):3857-64. PubMed ID: 8620010
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phase behavior of a lattice hydrophobic oligomer in explicit water.
    Romero-Vargas Castrillón S; Matysiak S; Stillinger FH; Rossky PJ; Debenedetti PG
    J Phys Chem B; 2012 Aug; 116(31):9540-8. PubMed ID: 22823886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics and motional dynamics of spin-labeled yeast iso-1-cytochrome c: 1. Stopped-flow electron paramagnetic resonance as a probe for protein folding/unfolding of the C-terminal helix spin-labeled at cysteine 102.
    Qu K; Vaughn JL; Sienkiewicz A; Scholes CP; Fetrow JS
    Biochemistry; 1997 Mar; 36(10):2884-97. PubMed ID: 9062118
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermodynamic and structural analysis of the folding/unfolding transitions of the Escherichia coli molecular chaperone DnaK.
    Montgomery D; Jordan R; McMacken R; Freire E
    J Mol Biol; 1993 Jul; 232(2):680-92. PubMed ID: 8102181
    [TBL] [Abstract][Full Text] [Related]  

  • 9. From Protein Design to the Energy Landscape of a Cold Unfolding Protein.
    Pulavarti SVSRK; Maguire JB; Yuen S; Harrison JS; Griffin J; Premkumar L; Esposito EA; Makhatadze GI; Garcia AE; Weiss TM; Snell EH; Kuhlman B; Szyperski T
    J Phys Chem B; 2022 Feb; 126(6):1212-1231. PubMed ID: 35128921
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A thermodynamic and kinetic analysis of the folding pathway of an SH3 domain entropically stabilised by a redesigned hydrophobic core.
    Cobos ES; Filimonov VV; Vega MC; Mateo PL; Serrano L; Martínez JC
    J Mol Biol; 2003 Apr; 328(1):221-33. PubMed ID: 12684010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering more stable proteins.
    Kazlauskas R
    Chem Soc Rev; 2018 Dec; 47(24):9026-9045. PubMed ID: 30306986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The thermodynamics of protein folding: a critique of widely used quasi-thermodynamic interpretations and a restatement based on the Gibbs-Duhem relation and consistent with the Phase Rule.
    Pethica BA
    Phys Chem Chem Phys; 2010 Jul; 12(27):7445-56. PubMed ID: 20480070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pressure-jump studies of the folding/unfolding of trp repressor.
    Desai G; Panick G; Zein M; Winter R; Royer CA
    J Mol Biol; 1999 May; 288(3):461-75. PubMed ID: 10329154
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal unfolding simulations of a multimeric protein--transition state and unfolding pathways.
    Duan J; Nilsson L
    Proteins; 2005 May; 59(2):170-82. PubMed ID: 15723359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Elucidating quantitative stability/flexibility relationships within thioredoxin and its fragments using a distance constraint model.
    Jacobs DJ; Livesay DR; Hules J; Tasayco ML
    J Mol Biol; 2006 May; 358(3):882-904. PubMed ID: 16542678
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermodynamics of barnase unfolding.
    Griko YV; Makhatadze GI; Privalov PL; Hartley RW
    Protein Sci; 1994 Apr; 3(4):669-76. PubMed ID: 8003984
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exploring the energy surface of protein folding by structure-reactivity relationships and engineered proteins: observation of Hammond behavior for the gross structure of the transition state and anti-Hammond behavior for structural elements for unfolding/folding of barnase.
    Matthews JM; Fersht AR
    Biochemistry; 1995 May; 34(20):6805-14. PubMed ID: 7756312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model.
    Garcia LG; Araújo AF
    Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of pH-driven conformational transitions of proteins: insights from continuum electrostatics calculations of acid unfolding.
    Fitch CA; Whitten ST; Hilser VJ; García-Moreno E B
    Proteins; 2006 Apr; 63(1):113-26. PubMed ID: 16400648
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics and thermodynamics of the unfolding and refolding of the three-stranded alpha-helical coiled coil, Lpp-56.
    Dragan AI; Potekhin SA; Sivolob A; Lu M; Privalov PL
    Biochemistry; 2004 Nov; 43(47):14891-900. PubMed ID: 15554696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.