BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 11891662)

  • 1. Local calcium changes regulate the length of growth cone filopodia.
    Cheng S; Geddis MS; Rehder V
    J Neurobiol; 2002 Mar; 50(4):263-75. PubMed ID: 11891662
    [TBL] [Abstract][Full Text] [Related]  

  • 2. PLA2 and secondary metabolites of arachidonic acid control filopodial behavior in neuronal growth cones.
    Geddis MS; Tornieri K; Giesecke A; Rehder V
    Cell Motil Cytoskeleton; 2004 Jan; 57(1):53-67. PubMed ID: 14648557
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Filopodial behavior is dependent on the phosphorylation state of neuronal growth cones.
    Cheng S; Mao J; Rehder V
    Cell Motil Cytoskeleton; 2000 Dec; 47(4):337-50. PubMed ID: 11093253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Induction of filopodia by direct local elevation of intracellular calcium ion concentration.
    Lau PM; Zucker RS; Bentley D
    J Cell Biol; 1999 Jun; 145(6):1265-75. PubMed ID: 10366598
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acetylcholine elongates neuronal growth cone filopodia via activation of nicotinic acetylcholine receptors.
    Zhong LR; Estes S; Artinian L; Rehder V
    Dev Neurobiol; 2013 Jul; 73(7):487-501. PubMed ID: 23335470
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry.
    Rajnicek AM; Foubister LE; McCaig CD
    J Cell Sci; 2006 May; 119(Pt 9):1736-45. PubMed ID: 16595545
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nitric oxide regulates growth cone filopodial dynamics via ryanodine receptor-mediated calcium release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2007 Sep; 26(6):1537-47. PubMed ID: 17714493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stimulation-induced changes in filopodial dynamics determine the action radius of growth cones in the snail Helisoma trivolvis.
    Van Wagenen S; Cheng S; Rehder V
    Cell Motil Cytoskeleton; 1999 Dec; 44(4):248-62. PubMed ID: 10602254
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulation of neuronal growth cone filopodia by nitric oxide.
    Van Wagenen S; Rehder V
    J Neurobiol; 1999 May; 39(2):168-85. PubMed ID: 10235672
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Filopodial calcium transients promote substrate-dependent growth cone turning.
    Gomez TM; Robles E; Poo M; Spitzer NC
    Science; 2001 Mar; 291(5510):1983-7. PubMed ID: 11239161
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glutamate regulates actin-based motility in axonal filopodia.
    Chang S; De Camilli P
    Nat Neurosci; 2001 Aug; 4(8):787-93. PubMed ID: 11477424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Control of neurite outgrowth and growth cone motility by phosphatidylinositol-3-kinase.
    Tornieri K; Welshhans K; Geddis MS; Rehder V
    Cell Motil Cytoskeleton; 2006 Apr; 63(4):173-92. PubMed ID: 16463277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of chick dorsal root ganglion growth cone filopodia by protein kinase C.
    Bonsall J; Rehder V
    Brain Res; 1999 Aug; 839(1):120-32. PubMed ID: 10482806
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Filopodial adhesion does not predict growth cone steering events in vivo.
    Isbister CM; O'Connor TP
    J Neurosci; 1999 Apr; 19(7):2589-600. PubMed ID: 10087072
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Local calcium transients regulate the spontaneous motility of dendritic filopodia.
    Lohmann C; Finski A; Bonhoeffer T
    Nat Neurosci; 2005 Mar; 8(3):305-12. PubMed ID: 15711541
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Neurotrophin-dependent dendritic filopodial motility: a convergence on PI3K signaling.
    Luikart BW; Zhang W; Wayman GA; Kwon CH; Westbrook GL; Parada LF
    J Neurosci; 2008 Jul; 28(27):7006-12. PubMed ID: 18596174
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Src-dependent tyrosine phosphorylation at the tips of growth cone filopodia promotes extension.
    Robles E; Woo S; Gomez TM
    J Neurosci; 2005 Aug; 25(33):7669-81. PubMed ID: 16107653
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Role of the actin bundling protein fascin in growth cone morphogenesis: localization in filopodia and lamellipodia.
    Cohan CS; Welnhofer EA; Zhao L; Matsumura F; Yamashiro S
    Cell Motil Cytoskeleton; 2001 Feb; 48(2):109-20. PubMed ID: 11169763
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autonomous regulation of growth cone filopodia.
    Rehder V; Cheng S
    J Neurobiol; 1998 Feb; 34(2):179-92. PubMed ID: 9468388
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Local activation of the nitric oxide/cyclic guanosine monophosphate pathway in growth cones regulates filopodial length via protein kinase G, cyclic ADP ribose and intracellular Ca2+ release.
    Welshhans K; Rehder V
    Eur J Neurosci; 2005 Dec; 22(12):3006-16. PubMed ID: 16367767
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.